Роль и значение измерений в науке и технике. Перспективы развития электроизмерительной техники. Зачем человеку нужны измерения (1)

Строительные материалы 12.10.2019
Строительные материалы

Не только школьники, но даже взрослые иногда задаются вопросом: зачем нужна физика? Особенно эта тема актуальна для родителей учеников, получивших в свое время образование, далекое от физики и техники.

Но как помочь школьнику? Кроме того, учителя могут задать на дом сочинение, в котором нужно описать свои мысли по поводу необходимости изучения науки. Разумеется, лучше данную тему поручить одиннадцатиклассникам, которые имеют полное представление о предмете.

Что такое физика

Говоря простым языком, физика - это Конечно, в настоящее время физика все больше и больше отдаляется от нее, углубляясь в техносферу. Тем не менее предмет тесно связан не только с нашей планетой, но и с космосом.

Так зачем нужна физика? Ее задача - понять, как происходят те или иные явления, почему образуются те или иные процессы. Также желательно стремиться к созданию специальных расчетов, которые помогли бы предугадать те или иные события. Например, как Исаак Ньютон открыл закон всемирного тяготения? Он изучал предмет, падавший сверху вниз, наблюдал за механическими явлениями. Затем создал формулы, которые действительно работают.

Какие разделы есть у физики

Предмет имеет несколько разделов, которые обобщенно или углубленно изучаются в школе:

  • механика;
  • колебания и волны;
  • термодинамика;
  • оптика;
  • электричество;
  • квантовая физика;
  • молекулярная физика;
  • ядерная физика.

У каждого раздела есть подразделы, подробно изучающие различные процессы. Если не просто изучать теорию, параграфы и лекции, а научиться представлять, экспериментировать с тем, о чем идет речь, то наука покажется весьма интересной, а вы поймете, зачем нужна физика. Сложные науки, которые нельзя применить на практике, например физику атома и ядра, можно рассмотреть по-другому: почитать интересные статьи из научно-популярных журналов, посмотреть документальные фильмы про данную область.

Как помогает предмет в обычной жизни

В сочинении «Зачем нужна физика» рекомендуется приводить примеры, если они уместны. Допустим, если вы описываете, зачем нужно изучать механику, то следует упомянуть случаи из повседневной жизни. Таким примером может стать обычная поездка на автомобиле: от села до города нужно доехать по свободной трассе за 30 минут. Расстояние около 60 километров. Разумеется, нам нужно знать, с какой скоростью лучше перемещаться по дороге, желательно с запасом времени.

Также можно привести пример строительства. Допустим, при возведении дома нужно правильно рассчитать прочность. Нельзя выбирать хлипкий материал. Школьник может провести другой эксперимент, чтобы понять, зачем нужна физика, например, взять длинную доску, поставить по концам стулья. Доска будет располагаться на спинках мебели. Далее следует нагрузить центр доски кирпичами. Доска будет прогибаться. При уменьшении расстояния между стульями прогиб будет меньше. Соответственно, человек получает пищу для размышления.

Хозяйка при готовке ужина или обеда часто сталкивается с физическими явлениями: тепло, электричество, механическая работа. Чтобы понимать, как поступить правильно, нужно понимать законы природы. Зачастую многому учит опыт. А физика и есть наука опыта, наблюдений.

Профессии и специальности, связанные с физикой

А вот зачем нужно изучать физику тому, кто оканчивает школу? Конечно, тем, кто поступает в университет или колледж по гуманитарным специальностям, предмет практически не нужен. Но вот в очень многих сферах наука требуется. Давайте рассмотрим в каких:

  • геология;
  • транспорт;
  • электроснабжение;
  • электротехника и приборы;
  • медицина;
  • астрономия;
  • строительство и архитектура;
  • теплоснабжение;
  • газоснабжение;
  • водоснабжение и так далее.

Например, даже машинисту поезда нужно знать данную науку, чтобы понимать, как работает локомотив; строитель должен уметь проектировать прочные и долговечные здания.

Программисты, специалисты IT-сферы также должны знать физику, чтобы понимать, как работает электроника, оргтехника. Кроме того, им нужно создавать реалистичные объекты для программ, приложений.

Применяется практически всюду: рентгенография, ультразвук, стоматологическое оборудование, лазерная терапия.

С какими науками связана

Физика очень тесно взаимосвязана с математикой, так как при решении задач нужно уметь преобразовывать различные формулы, проводить расчеты и строить графики. Можно добавить данную идею в сочинение «Зачем нужно изучать физику», если речь пойдет о вычислениях.

Также эта наука связана с географией, чтобы понимать природные явления, уметь анализировать грядущие события, погоду.

Биология и химия тоже связаны с физикой. Например, ни одна живая клетка не сможет существовать без гравитации, воздуха. Также живые клетки должны перемещаться в пространстве.

Как написать сочинение ученику 7-го класса

А теперь давайте поговорим о том, что может написать семиклассник, частично изучивший некоторые разделы физики. Например, можно написать о той же гравитации либо привести пример с измерением расстояния, которое он прошел от одной точки до другой, чтобы вычислить скорость своей ходьбы. Ученик 7 класса сочинение «Зачем нужна физика» может дополнить различными опытами, которые проводились на уроках.

Как видите, творческую работу можно написать вполне интересной. Кроме того, она развивает мышление, дарит новые идеи, пробуждает любопытство к одной из главнейших наук. Ведь в будущем физика может помочь при любых жизненных обстоятельствах: в быту, при выборе профессии, при устройстве на хорошую работу, во время отдыха на природе.

Метрология - наука об измерениях



Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Это наука, которая занимается установлением единиц измерений различных физических величин и воспроизведением их эталонов, разработкой методов измерений физических величин, а также анализом точности измерений и исследованием и устранением причин, вызывающим погрешности в измерениях.

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются и известны с незапамятных времен измерения таких величин, как длина, объем, вес, время и др. Конечно, методы и средства измерений этих величин в древности были примитивными и несовершенными, тем не менее, без них невозможно представить эволюцию человека разумного.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.
Для обеспечения научно-технического прогресса метрология должна опережать в своем развитии другие области науки и техники, ибо для каждой из них точные измерения являются одним из основных путей их совершенствования.

Задачи науки метрологии

Поскольку метрология изучает методы и средства измерения физических величин с максимальной степенью точности, ее задачи и цели вытекают из самого определения науки. Тем не менее, учитывая колоссальную важность метрологии, как науки, для научно-технического прогресса и эволюции человеческого общества, все термины и определения метрологии, включая ее цели и задачи, стандартизированы посредством нормативных документов - ГОСТ ов.
Итак, основными задачами метрологии (по ГОСТ 16263-70) являются:

  • установление единиц физических величин, государственных эталонов и образцовых средств измерений;
  • разработка теории, методов и средств измерений и контроля;
  • обеспечение единства измерений и единообразных средств измерений;
  • разработка методов оценки погрешностей, состояния средств измерения и контроля;
  • разработка методов передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.


Краткая история развития метрологии

Потребность в измерениях возникла в незапамятные времена. Для этого в первую очередь использовались подручные средства.
Например, единица веса драгоценных камней - карат, что в переводе с языков древнего юга-востока означает "семя боба", "горошина"; единица аптекарского веса - гран, что в переводе с латинского, французского, английского, испанского означает "зерно".

Многие меры имели антропометрическое происхождение или были связаны с конкретной трудовой деятельностью человека.
Так, в Киевской Руси применялись в обиходе вершок - длина фаланги указательного пальца; пядь - расстояние между концами вытянутых большого и указательного пальцев; локоть - расстояние от локтя до конца среднего пальца; сажень - от "сягать", "достигать", т. е. можно достать; косая сажень - предел того, что можно достать: расстояние от подошвы левой ноги до конца среднего пальца вытянутой вверх правой руки; верста - от "верти", "поворачивая" плуг обратно, длина борозды.

Древние вавилоняне установили год, месяц, час. Впоследствии 1/86400 часть среднего периода обращения Земли вокруг своей оси получила название секунды.
В Вавилоне во II в. до н. э. время измерялось в минах. Мина равнялась промежутку времени (равному, примерно, двум астрономическим часам) , за который из принятых в Вавилоне водяных часов вытекала "мина" воды, масса которой составляла около 500 г. Затем мина сократилась и превратилась в привычную для нас минуту.
Со временем водяные часы уступили место песочным, а затем более сложным маятниковым механизмам.

Важнейшим метрологическим документом в России является Двинская грамота Ивана Грозного (1550 г.) . В ней регламентированы правила хранения и передачи размера новой меры сыпучих веществ - осьмины. Ее медные экземпляры рассылались по городам на хранение выборным людям - старостам, соцким, целовальникам. С этих мер надлежало сделать клейменые деревянные копии для городских померщиков, а с тех, в свою очередь, - деревянные копии для использования в обиходе.

Метрологической реформой Петра I к обращению в России были допущены английские меры, получившие особенно широкое распространение на флоте и в кораблестроении - футы, дюймы.
В 1736 г. по решению Сената была образована Комиссия весов и мер под председательством главного директора Монетного двора графа М.Г. Головкина. В состав комиссии входил выдающийся ученый XVIII в., современник М. В. Ломоносова, - Леонард Эйлер, который внес неоценимый вклад в развитие многих наук.
В качестве исходных мер комиссия изготовила медный аршин и деревянную сажень, за меру веществ было принято ведро московского Каменномостского питейного двора. Важнейшим шагом, подытожившим работу комиссии, было создание русского эталонного фунта.

Идея построения системы измерений на десятичной основе принадлежит французскому астроному Г. Мутону, жившему в XVII в. Позже было предложено принять в качестве единицы длины одну сорокамиллионную часть земного меридиана. На основе единственной единицы - метра - строилась вся система, получившая название метрической.

В России указом «О системе Российских мер и весов» (1835 г.) были утверждены эталоны длины и массы - платиновая сажень и платиновый фунт.
В соответствии с международной Метрологической конвенцией, подписанной в 1875 г., Россия получила платиноиридиевые эталоны единицы массы № 12 и 26 и эталоны единицы длины № 11 и 28 , которые были доставлены в новое здание Депо образцовых мер и весов.
В 1892 г. управляющим Депо был назначен Д.И. Менделеев, которую он в 1893 г. преобразует в Главную палату мер и весов - одно из первых в мире научно-исследовательских учреждений метрологического профиля.

Метрическая система в России была введена в 1918 г. декретом Совета Народных Комиссаров «О введении Международной метрической системы мер и весов». Дальнейшее развитие метрологии в России связано с созданием системы и органов служб стандартизации.

Развитие естественных наук привело к появлению все новых и новых средств измерений, а они, в свою очередь, стимулировали развитие наук, становясь все более мощным средством их продвижения.

Вопросы и задания для экзаменационных билетов
по учебной дисциплине (скачать в формате Word) .

Скачать рабочие программы

"Метрология, стандартизация и сертификация"
для специальности СПО "Техническое обслуживание и ремонт автомобильного транспорта"


для специальности СПО "Механизация сельского хозяйства"

Скачать календарно-тематические планы по учебным дисциплинам (в формате Word):

"Метрология, стандартизация и сертификация"
для специальности СПО "Техническое обслуживание и ремонт автомобильного транспорта"

"Метрология, стандартизация и подтверждение качества"
для специальности СПО "Механизация сельского хозяйства"



Предмет физики.

Физика – естественная наука, задача которой –изучение природы. Природа для нас это совокупность явлений окружающего мира, из взаимодействие. Мерилом справедливости научных выводов является опыт. Метод любой науки состоит в наблюдении, размышлении и опыте. Для физики, название которой означает «природоведение» существенным является установление закономерностей, которые наблюдаются в явления как живой, так и неживой природы. Эти закономерности выражаются или описываются теми или иными физическими законами.

В недалеком историческом прошлом все явления природы принято было делить на классы.: теплоты, электричества, механики, магнетизма, химических явлений, световых явлений, рентгеновских лучей, ядерных превращений. и т.д. Однако эта классификация явлений является отображением различных сторон одной физической картины мира.

Почему изучение физики так важно для человечества? Одним из существенных мотивов является необходимость применения физических, прежде всего экспериментальных методов для получения качественно новых сведений о явлениях из других областей науки. Это чисто прагматичный подход. Что касается самой физики, то в ней открытие новых явлений и осмысливание их позволяет усовершенствовать и построить более стройную картину миру, систему представлений о природе.

Пример прагматической ценности физических методов – создание микроскопа позволило исследовать множество микроскопических объектов и получить громадное количество знаний о живых микроскопических объектах в том числе в разделе клеточной биологии. Применение рентгено структурного анализа позволило расшифровать структуру ДНК. Собственные достижения физики – в прошлом веке было понято, что тепловые явления могут быть сведены к механическим. Теплота и температурные эффекты могут быть описаны с помощью законов механики.

При изучении любого ограниченного круга явлений важно установить закономерности или принципы с помощью которых объясняются все известные наблюдаемые явления рассматриваемого ряда. Установление этих принципов в дальнейшем предсказать некоторые новые явления.

Физика, будучи наукой естественной, не основывается на законах и принципах, которые могут быть получены, доказаны, рассмотрены чисто умозрительно. Всегда, любой физический закон является следствием и получен в результате обобщения набора опытных, экспериментальных фактов. Любой опыт ставится с помощью измерительных приборов. В процессе выполнения опыта измеряются те или иные результаты с некоторым погрешностями. Возникает вопрос о том, что те законы, которые подтверждаются данным опытом соблюдаются с некоторой точностью? Действительно, в некоторых случаях известные закономерности справедливы лишь в ограниченных пределах и с ограниченной точностью. С совершенствованием техники, измерительных методик и накоплением массивов опытных фактов возможно получать более точные результаты, либо опровергнуть ранее наблюдаемые с относительно большими погрешностями. В этом случае первично сформулированные принципы заменяются на новые. Этот процесс иллюстрирует собой методологию науки физики.

В качестве примера рассмотрим эволюцию Ньютоновской механики. Ньютоновской она называется потому, что Исаак Ньютон обощил и систематизировал семейство опытных фактов в «Математических началах натуральной философии»- 1642г. Ньютоновская механика с очень хорошей точностью описывает относительно медленные движения, справедлива вы нерелятивистском приближении. v << c и является, предельным случаем релятивистской механики при v/ c << 1 . Принципы Ньютоновской механики несправедливы при описании объектов микромира, в атомных, молекулярных масштабах. В этом случае правильное, подтверждаемое опытом описание достигается только на основе принципов квантовой механики.

Модель, теория, закон.

Модель – мысленный образ явления, опирающийся на известные понятия, и ограничивающийся при рассмотрении явления только наиболее существенными его сторонами. Модель позволяет построить полезное, возможно, математическое описание. Модель является отображением явления, в котором учитываются наиболее существенные его свойства. Пример: квазиклассическая планетарная модель атома Бора. Модельные предположения состоят в пренебрежении размерами ядра и электронов. Модель опускает вопросы устойчивости такого образования. Модель атома Бора правильно описывает спектр простейших водородоподобных атомов.

Теория. Иногда термин теория и модель являются синонимами. Чаще модель предполагает относительную простоту, по сравнению с теорией. Теория рассматривает более широкий круг явлений, изучает их более детально. Возможно, что теория строится на основе ряда моделей и т. образом привести решение задач с высокой математической точностью. Пример: атомно - молекулярная теория строения вещества.

Закон – краткие и общие утверждения относительно характера процессов. Например: импульс замкнутой системы сохраняется. Или, например, закон всемирного тяготения: сила пропорциональна произведению масс и обратно пропорциональна квадрату расстояния между ними. Закон устанавливает соотношение между физическими величинами, описывающими явление. Чтобы называться законом некоторое утверждение должно быть многократно подтверждено опытными фактами в широком диапазоне условий. Причем эта экспериментальная проверка должна давать всякий раз точный результат. Например закон сохранения энергии рассматриваемый в актах столкновения частиц гласит: энергия системы до столкновения равна энергии системы после столкновения. Знак равенства имеет место всегда, во множестве опытов, равенство выполняется с достижимой современными приборами точностью.

Системы единиц, размерности.

Физика – количественная наука. Любое измерение дает результат в виде числа. Измеренное число подразумевает, что введены некоторые масштабы (эталоны) , которые будут называться единицами измерений (стандарты).

Роль и значение измерений в науке и технике. Перспективы развития электроизмерительной техники

Измерения являются одним из основных средств познания природы, ее явлений и законов.

Особенно важную роль играют электрические измерения, так как теоретическая и прикладная электротехника имеет дело с различными электрическими и магнитными величинами и явлениями, которые не воспринимаются непосредственно органами чувств. Поэтому обнаружение присутствия этих величин, количественное их, а так же изучение электрических и магнитных явлений возможно только при помощи электроизмерительных приборов.

Быстро развивающейся областью измерительной техники является измерение электрических величин электрическими приборами и методами. Это объясняется возможностью непрерывного измерения и записью его результатов на расстоянии, высокой точностью, чувствительностью и другими положительными свойствами электрических методов и приборов измерения. В современном производстве соблюдение любого технологического процесса и автоматизация управления обеспечиваются применением измерительной техники и тесно связанной с ней автоматики.

Таким образом, электрические измерения обеспечивают рациональное ведение любых технологических процессов, бесперебойную работу электроустановок и т.п., а следовательно, улучшают технико-экономические показатели работы предприятия.

Начертите структурную схему электронно-лучевого осциллографа и опишите назначение основных его узлов

Канал вертикального отклонения электронно-лучевого осциллографа предназначен для передачи входного напряжения на вертикальные отклоняющиеся пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющиеся пластины.

Входное устройство

Рис. 1 Структурная схема электронно-лучевого осциллографа

Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтально отклоняющие пластины напряжения, вызывающего горизонтальное перемещение луча, пропорционально времени.

Изображение формируется с помощью электронно-лучевой трубки, использующей электростатическое отклонение луча. В ней с помощью электронного прожектора формируется поток электронов в виде тонкого луча, который, достигая люминофора на внутренней поверхности экрана, вызывает его свечение. Отклонение луча по вертикали и горизонтали осуществляется с помощью двух пар пластин, на которые подаются отклоняющие напряжения. Исследуемое напряжение является функцией времени, и поэтому для его наблюдения необходимо, чтобы луч двигался по экрану в горизонтальном направлении пропорционально времени, а его перемещение по вертикали определялось входным исследуемым напряжением. Для движения луча по горизонтали к горизонтальным отклоняющимся пластинам прикладывается напряжение пилообразной формы, что обеспечивает перемещение луча слева направо с постоянной скоростью, быстрый возврат в начало экрана и очередное движение с постоянной скоростью слева направо. Исследуемое напряжение подается на вертикальные отклоняющие пластины, в результате положение луча в момент времени однозначно соответствует значению исследуемого сигнала в данный момент времени.

В осциллографе имеются два канала - канал вертикального (Y) и горизонтального (X) отклонения. Канал вертикального отклонения предназначен для передачи входного напряжения на вертикальные отклоняющие пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющие пластины. Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтальные отклоняющие пластины напряжения вызывающего горизонтальное перемещение луча, пропорционально времени.

В осциллографах применяются несколько видов развертки, основная из которых образуется с помощью пилообразного напряжения. Чтобы линия развертки не мерцала при наблюдении, луч должен прочерчивать одну и ту же траекторию не менее 25…30 раз в секунду ввиду инерционной способности зрения человека.

Приведите схему и опишите, каким образом определяется место повреждения изоляции кабеля методом петли Муррея

Метод петли из жил кабеля - метод Муррея представляет собой использование схемы одинарного моста.

Для определения места пробоя между жилой и броней или землей концы б-б´ исправной и поврежденной жил кабеля закорачиваются. К двум другим концам а-а´ подключают магазины сопротивлений R и r А и гальванометр. Зажим, в котором соединены магазины резисторов, через батарею элементов соединен с землей.

Рис. 1 Схема метода петли из жил кабеля - метод Муррея

В результате имеем схему моста, равновесие которой определяется условием:

Определив r x , зная удельное сопротивление ρ материала жил кабеля и их сечение S, по формуле l x =r x S/ρ определяют расстояние от конца кабеля а´ до места повреждения изоляции.

При неизменном сечении жил кабеля r x и r можно заменить их выражением:

откуда определяется расстояние до места повреждения

Для проверки результата измерения производят второе аналогичное измерение, поменяв концы кабеля а и а´. При этом расстояние до места повреждения определяют по формуле:

где R´ и r´ A - значения сопротивлений плеч моста при втором измерении. Правильность результатов измерений подтверждается равенством l x + l y =2l

Определите напряжение на сопротивлении и наибольшую возможную относительную погрешность при его определении если напряжение на зажимах сети равно 220 В, а напряжение на сопротивлении R 1 = 180 В. Для измерения используются вольтметры класса точности 1,0 на 250 В

Из электротехники знаем:

U 2 = U - U 1 = 220 - 180 = 40 В

Наибольшая возможная относительная погрешность

где - относительная погрешность прибора, в нашем случае для класса точности 1,0 = 1,0%;

U н - номинальное напряжение вольтметра;

U - показание вольтметра.

Ответ: U 2 = 40 В, .

Измерительный прибор без шунта сопротивлением R A = 28 Ом имеет шкалу в 50 делений цена деления 0,01 A/дел. Определить цену деления этого прибора и предельную величину измеряемого тока при подключении шунта сопротивлением R Ш = 0,02 Ом.

Найдем шунтирующий множитель «р»

где r И - сопротивление прибора; r Ш - сопротивление шунта.

Найдем предельную величину измеряемого прибором тока

где W - количество делений прибора; N - цена деления

Найдем предельную величину измеряемого прибором тока при подключении шунта

где I max - предельная величина измеряемого прибором тока;

р - шунтирующий множитель

Найдем цену деления прибора при подключении шунта

где I′ max - предельная величина измеряемого прибором с шунтом тока; W - количество делений прибора

Ответ: А, А/дел.

На щитке счетчика написано: 220В, 5А, 1кВт·ч - 2000 оборотов диска. Вычислить номинальную постоянную счетчика, действительную постоянную, относительную погрешность, поправочный коэффициент, если при проверке счетчика на неизменное напряжение U = 220 В и неизменной величине тока I = 5 А диск сделал N = 37 оборотов за 60 с.

Определим номинальную постоянную счетчика

где W н - номинальное количество регистрируемой счетчиком энергии за N н оборотов диска

Определим действительную постоянную счетчика

где W - расчетное количество зарегистрированной энергии за N оборотов диска при проверке счетчика, при чем: W = U ∙ I ∙ t (U - неизменное напряжение подаваемое в течении времени - t при неизменной величине тока - I).

Определим относительную погрешность счетчика

где k н - номинальная постоянная счетчика; k - действительная постоянная счетчика, определенная при проверке.

Поправочный коэффициент будет равен

Ответ: Вт·ч/об, Вт·ч/об,

Номинальный ток амперметра 5А, класс точности его 1,5. Определить наибольшую возможную абсолютную погрешность.

Наибольшая возможная абсолютная погрешность:

где γ д - относительная погрешность амперметра, в нашем случае для класса точности 1,5 γ д = 1,5%; I н - номинальный ток амперметра.

Литература

  1. «Электрические измерения» В.С. Попов (М. 1974 г.)
  2. «Электротехника и электроника» под ред. проф. Б.И. Петленко М. 2003 г.
  3. Электрические измерения под редакцией Малиновского 1983 г.

Тема 1

« Предмет и метод физики. Измерения. Физические величины.»

Первые научные представления возникли давно - по-видимому, на самых ранних этапах истории человечества, отраженной в письменных источниках. Однако, физика как наука в своем современном виде берет начало со времен Галилео Галилея (1Галилей и его последователь Исаак Ньютон (1совершили революцию в научном познании. Галилей предложил в качестве основного метода исследования метод экспериментального познания, а Ньютон сформулировал первые законченные физические теории (классическая механика, классическая оптика, теория тяготения).

В своем историческом развитии физика прошла 3 этапа (смотри диаграмму).

Революционный переход от одного этапа к следующему связан со сломом старых базовых представлений об окружающем мире в связи с полученными новыми экспериментальными результатами.

Слово physis в буквальном переводе означает природа, то есть сущность, внутреннее основное свойство явления, какая-то скрытая закономерность, определяющая протекание, ход явления.

Физика - это наука о наиболее простых и вместе с тем наиболее общих свойствах тел и явлений. Физика - фундамент естествознания.

Связь физики со всеми остальными науками представлена на диаграмме.

В основании физики (как и любой естественной науки) лежат утверждения о материальности мира и существовании объективных устойчивых причинно-следственных связей между явлениями. Физика объективна, так как изучает реальные природные явления, но одновременно и субъективна вследствие сущности процесса познания, как отражения действительности.

По современным представлениям все, что нас окружает, представляет собой комбинацию небольшого количества так называемых элементарных частиц, между которыми возможны 4 различных вида взаимодействий. Элементарные частицы характеризуются 4 числами (квантовыми зарядами), значения которых определяют в какой вид взаимодействия может вступать рассматриваемая элементарная частица (Таблица 1.1).

Заряды

Взаимодействия

массовый

гравитационное

электрический

электромагнтное

барионный

лептонный

Такая формулировка обладает двумя важными свойствами:

Адекватно описывает наши современные представления об окружающем мире;

Достаточно обтекаема и с вряд ли придет в противоречие с новыми экспериментальными фактами.

Дадим краткие пояснения незнакомым понятиям, используемым в этих утверждениях. Почему мы говорим о так называемых элементарных частицах? Элементарные частицы в точном значении этого термина – первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Однако, большинство известных элементарных частиц не удовлетворяют строгому определению элементарности, поскольку являются составными системами. Согласно модели Цвейга и Гелл-Мана структурными единицами таких частиц являются кварки . В свободном состоянии кварки не наблюдаются. Необычное название «кварки» было заимствовано из книги Джеймса Джойса «Поминки по Финнигану», где встречается словосочетание «три кварка», которое слышится герою романа в кошмарном бреду. В настоящее время известно более 350 элементарных частиц, в основном нестабильных и их число постоянно растет.

Вы встречались с проявлением трех из этих взаимодействий, когда изучали явление радиоактивного распада (смотри схему внизу).

Вы ранее уже сталкивались с таким проявлением сильного взаимодействия как ядерные силы, удерживающие протоны и нейтроны внутри атомного ядра. Сильное взаимодействие вызывает процессы, протекающие с наибольшей, по сравнению с другими процессами, интенсивностью и приводит к самой сильной связи элементарных частиц. В отличие от гравитационного и электромагнитного сильное взаимодействие является короткодействующим: его радиус

Характерные времена сильного взаимодействия

Краткая хронология изучения сильного взаимодействия

1911 – атомное ядро

1932 – протонно-нейтронное строение

(, В. Гейзенберг)

1935 – пи-мезон (Юкава)

1964 – кварки (М. Гелл-Манн, Г. Цвейг)

70-е XX века - квантовая хромодинамика

80-е XX века - теория великого объединения

https://pandia.ru/text/78/486/images/image007_3.gif" width="47 height=21" height="21">Слабое взаимодействие ответственно за распады элементарных частиц, стабильных относительно сильного и электромагнитного взаимодействий. Эффективный радиус слабого взаимодействия не превышает Поэтому на больших расстояния оно существенно слабее электромагнитного, которое в свою очередь до расстояний меньше 1 Ферми слабее сильного взаимодействия. На расстояниях, меньших слабые и электромагнитные взаимодействия образуют единое электрослабое взаимодействие. Слабое взаимодействие вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных элементарных частиц, времена жизни которых лежат в диапазоне Несмотря на малую величину слабое взаимодействие играет очень важную роль в природе. В частности процесс превращения протона в нейтрон, в результате которого 4 протона превращаются в ядро гелия (основной источник выделения энергии внутри Солнца) обусловлен слабым взаимодействием.

Может ли быть открыто пятое взаимодействие? Однозначного ответа не существует. Однако, по современным представлениям все четыре вида взаимодействия являются различными проявлениями одного единого взаимодействия. Это утверждение составляет суть теории великого объединения .

Теперь обсудим, как формируется научное знание об окружающем нас мире.

Знанием называют те сведения, опираясь на которые мы можем уверенно планировать нашу деятельность на пути к цели, и деятельность эта непременно приводит к успеху. Чем сложнее цель, тем больше знания требуется для ее достижения.

Научное знание формируется в результате синтеза двух присущих человеку элементов деятельности: творчества и регулярного освоения окружающего пространства с помощью метода проб и ошибок (смотри диаграмму).

https://pandia.ru/text/78/486/images/image010_2.jpg" width="553" height="172 src=">

Физический закон - это долго живущая и «заслуженная» физическая теория. Только такие попадают в учебники и изучаются в общеобразовательных курсах.

Если опыт не подтвердил предсказание, то весь процесс необходимо начинать сначала.

« Хорошая » физическая теория должна удовлетворять следующим требованиям:

1) должна исходить из небольшого количества фундаментальных положений;

2) должна быть достаточно общей;

3) должна быть точной;

4) должна допускать возможность усовершенствования.

Ценность физической теории определяется тем насколько точно можно установить тот предел, за которым она несправедлива. Эксперимент не может подтвердить теорию, а может ее только опровергнуть .

Процесс познания может идти только через построение модели , что связано с субъективной стороной этого процесса (неполнота информации, многообразие любого явления, облегчение освоения с помощью конкретных образов).

Модель в науке - это не увеличенная или уменьшенная копия предмета, а картина явления, освобожденная от не существенных для поставленной задачи деталей.

Модели подразделяются на механические и математические.

Примеры: материальная точка, атом, абсолютно твердое тело.

Как правило, для большинства понятий процесс развития моделей идет путем постепенного усложнения от механических к математическим.

Рассмотрим этот процесс на примере понятия атома. Перечислим основные модели.

Шарик (атом древних и классической физики)

Шарик с крючком

Атом Томсона

Планетарная модель (Резерфорд)

Модель Бора

Уравнение Шредингера

https://pandia.ru/text/78/486/images/image012.gif" width="240" height="44">

Модель атома в виде твердого неделимого шарика при всей кажущейся с точки зрения сегодняшних представлений нелепости позволила, например, в рамках кинетической теории газов получить все основные газовые законы.

Открытие в 1897 году электрона привело к созданию Дж. Дж. Томпсоном модели, которую обычно называют «пудинг с изюмом» (смотри рисунок внизу).

https://pandia.ru/text/78/486/images/image014.gif" width="204" height="246">

Согласно этой модели в положительно заряженном «тесте» плавают отрицательно заряженные изюминки – электроны. Модель объясняла электронейтральность атома, одновременное возникновение свободного электрона и положительно заряженного иона. Однако, результаты опыта Резерфорда по рассеянию альфа частиц принципиально изменили представление о строении атома.

На представленной ниже картинке изображена схема установки в опыте Резерфорда.

В рамках модели Томпсона было невозможно объяснить сильное отклонение траектории движения альфа частиц и, поэтому, возникло понятие атомного ядра . Проведенные расчеты позволили определить размеры ядра, они оказались порядка одного Ферми. Таким образом, на смену модели Томпсона пришла планетарная модель Резерфорда (смотри картинку внизу).

Это типично механическая модель, поскольку атом представляется как аналог солнечной системы: вокруг ядра – Солнца по круговым траекториям движутся планеты – электроны. Известный советский поэт Валерий Брюсов так отозвался об этом открытии

Еще быть может, каждый атом –

Вселенная, где сто планет;

Там всё, что здесь, в объёме сжатом,

Но также то, чего здесь нет.

С момента возникновения планетарная модель подвергалась серьёзной критике в связи с её нестабильностью. Движущийся по замкнутой орбите электрон должен излучать электромагнитные волны и, следовательно, упасть на ядро. Точные расчеты показывают, что максимальное время жизни атома в модели Резерфорда не больше 20 минут. Великий датский физик Нильс Бор для спасения идеи атомного ядра создал новую модель атома, носящую его имя. Она основана на двух основных положениях (постулатах Бора):

Атомы могут длительное время находится только в определенных, так называемых стационарных состояниях. Энергии стационарных состояний образуют дискретный спектр. Иначе говоря, возможны только круговые орбиты с радиусами, задаваемыми соотношением

https://pandia.ru/text/78/486/images/image018.gif" width="144" height="49">

где n – целое число.

При переходе из одного начального квантового состояния в другое происходит излучение или поглощение кванта света (смотри рисунок).

https://pandia.ru/text/78/486/images/image020.gif" width="240" height="238">

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение в частных производных относительно волновой функции Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который пропорционален вероятности нахождения частицы (электрона) в данной точке пространства. Иначе говоря, электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность которого характеризует вероятности нахождения электрона в различных точках объема атома (смотри рисунки снизу).

https://pandia.ru/text/78/486/images/image025_0.gif" width="379" height="205">

К сожалению, язык, которым мы пользуемся в нашей повседневной жизни, непригоден для описания процессов, происходящих в глубинах материи (применяются оень абстрактные модели). Физики «беседуют» с Природой на языке математики с помощью чисел, геометрических фигур и линий, уравнений, таблиц, функций и т. д. Такой язык обладает удивительной предсказательной силой: оперируя формулами, можно получить следствия (как в математике), оценить результат количественно и проверить затем опытом справедливость предсказания. За изучение явлений, которые нельзя описать на языке физики из-за неопределенности понятий, невозможности определить процесс измерения, физики просто не берутся.

История развития физики показала, что разумное использование математики неизменно приводило к мощному прогрессу в исследовании природы, а попытки абсолютизировать какой-то математический аппарат как единственно пригодный ведут к застою.

Физика как любая наука может ответить только на вопрос «Как?», но не на вопрос «Почему?».

Наконец, рассмотрим заключительную часть темы №1 о физических величинах.

Физическое понятие, отражающее какое-то свойство тел и явлений и выражаемое числом в процессе измерения называется физической величиной.

Физические величины в зависимости от способа их представления подразделяются на скалярные, векторные, тензорные и т. д. (смотри Таблицу 1.2).

Таблица 1.2

величины

примеры

скалярные

температура, объем, давление

векторные

скорость, ускорение, напряженность

тензорные

давление в двигающейся жидкости

https://pandia.ru/text/78/486/images/image027_0.gif" width="73" height="75 src=">

Вектором называется упорядоченный набор чисел (смотри иллюстрацию сверху). Тензорные физические величины записываются с помощью матриц.

Также все физические величины можно разделить на основные и производные от них. К основным относятся единицы измерения массы, электрического заряда (основные характеристики материи, обуславливающие гравитационное и электромагнитное взаимодействие), длины и времени (так как отражают фундаментальные свойства материи и ее атрибутов – пространства и времени), а также температуры, количества вещества и силы света. Для установления производных единиц используют физические законы, связывающие их с основными единицами.

В настоящее время обязательна к применению в научной и учебной литературе Международная система единиц (СИ ), где в качестве основных единиц используются килограмм, Ампер, метр, секунда, Кельвин, моль и Кандела. Причиной замены в качестве основной единицы Кулона (электрический заряд) на Ампер (сила электрического тока) чисто техническая: реализация эталона в 1 Кулон в отличие от 1 Ампера практически невозможна, а сами единицы связаны простым соотношением:



Рекомендуем почитать

Наверх