Сообщение карл гаусс. Биография карла фридриха гаусса. Огромный град стал кошмаром среди белого дня в Италии. Что происходит с природой

Полы и напольные покрытия 02.07.2020
Полы и напольные покрытия

Всякое целое число большее единицы, однозначно разлагается на простые делители.

Иоганн Карл Фридрих Гаусс

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг - 23 февраля 1855) - немецкий математик, астроном и физик, считается одним из величайших математиков всех времён, «королём математиков».

Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери - яркий интеллект.

В семь лет Карл Фридрих поступил в Екатерининскую народную школу. Поскольку считать там начинали с третьего класса, первые два года на маленького Гаусса внимания не обращали. В третий класс ученики обычно попадали в десятилетнем возрасте и учились там до конфирмации (пятнадцати лет). Учителю Бюттнеру приходилось заниматься одновременно с детьми разного возраста и разной подготовки. Поэтому он давал обычно части учеников длинные задания на вычисление, с тем чтобы иметь возможность беседовать с другими учениками. Однажды группе учеников, среди которых был Гаусс, было предложено просуммировать натуральные числа от 1 до 100. По мере выполнения задания ученики должны были класть на стол учителя свои грифельные доски. Порядок досок учитывался при выставлении оценок. Десятилетний Карл положил свою доску, едва Бюттнер кончил диктовать задание. К всеобщему удивлению, лишь у него ответ был правилен. Секрет был прост: пока диктовалось задание, Гаусс успел для себя открыть заново формулу для суммы арифметической прогрессии! Слава о чудо-ребёнке распространилась по маленькому Брауншвейгу.

В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать - математиком или филологом.

О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду - герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счёта. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Гёттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.

В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был всё создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Гёттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.

«30 марта 1796 года наступает для него день творческого крещения… - пишет Ф. Клейн. - Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчётливо осознал, что из его теории вытекает построение семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n -угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида

n = 2 2 k + 1

(числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

Это событие явилось поворотным пунктом в жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».

Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времён». Сколь трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошёл, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.

Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.

«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашёл отношение объёмов цилиндра и вписанного в него шара — 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, но памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», - писал Г. Вебер.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса - летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашёл полное доказательство гипотезы Эйлера. Впрочем, Гаусс ещё не знал о работах своих великих предшественников. Весь нелёгкий путь к «золотой теореме» он прошёл самостоятельно!

Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.

В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности - о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашёл лишь 23 октября 1813 года, причём в дневниках он отметил, что это совпало с рождением сына.

За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.

«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.

В Брауншвейге Гаусс не имел литературы, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвящённую доказательству Основной теоремы алгебры — утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом - комплексным. Гаусс критически разбирает все предшествующие попытки доказательства и с большой тщательностью проводит идею д"Аламбера. Безупречного доказательства всё же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал ещё три доказательства Основной теоремы (последний раз - в 1848 году).

«Математический век» Гаусса - менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).

Очень многие исследования Гаусса остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны 1939-45 оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 томов сочинений Гаусса. Наиболее интересными в этом наследии являются дневник Гаусса и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Гаусс отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Гаусса в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Гаусс пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, было причиной того, что Гаусс их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Гаусса неевклидова геометрия была построена и опубликована Н.И. Лобачевским, Гаусс отнёсся к публикациям Н.И. Лобачевского с большим вниманием, был инициатором избрания его чл.-корр. Гёттингенского учёного общества, но своей оценки великого открытия Н.И. Лобачевского по существу не дал. Архивы Гаусса содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит Якоби и Абелю. Содержательный набросок теории кватернионов, 20 лет спустя независимо открытых Гамильтоном так же обнаружен в неопубликованных работах Гаусса.

С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.

Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц. Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было непросто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной.

Гаусс начал интересоваться астрономией ещё в Гёттингене. Кое-какие наблюдения он проводил в Брауншвейге, причём часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу.

Учёный вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашёл планету (её назвали Церерой). Это была подлинная сенсация!

25 марта 1802 году Ольберс открывает ещё одну планету - Палладу. Гаусс быстро вычисляет её орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.

К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Ещё в 1802 году он предлагает куратору Гёттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 года. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», — восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, по-видимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.

Жизнь Гаусса в Гёттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребёнок. Вдобавок Наполеон обложил Гёттинген тяжёлой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Лаплас. Оба раза Гаусс гордо отказался. Однако нашёлся ещё один благодетель, на этот раз - аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гёте. «Смерть мне милее такой жизни», - пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».

В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в своё время за три дня напряжённого счёта вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространённых методов обработки результатов наблюдений.

На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.

Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Мёбиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.

К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии - задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях».

В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящён внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с её положением в пространстве.

Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Гаусс предложил числовую характеристику меры искривления поверхности.

К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несёт печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы ещё не определились.

В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса: умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний физик Вильгельм Вебер. Гаусс познакомился с ним в 1828 году в доме Гумбольдта. Гауссу было 54 года, о его замкнутости ходили легенды, и всё же в Вебере он нашёл сотоварища по занятиям наукой, какого он никогда не имел прежде.

Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нойбургом.

Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Гёттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Гаусс создаёт одну из важнейших глав математической физики - теорию потенциала.

Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Гёттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма). Возвратился в Гёттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года.

В последние годы жизни Гаусса ему воздавались всевозможные почести, но он не был настолько счастлив, насколько заслужил на это право. Оставаясь, как всегда, могучим разумом и плодотворно изобретательным, Гаусс не стремился к отдыху, когда за несколько месяцев до смерти появились первые признаки его последней болезни.

В первый раз, более чем за 20 лет, он покинул Гёттинген 16 июня 1854 года, чтобы увидеть строительство железной дороги между его городом и Касселеем - Гаусс всегда проявлял большой интерес к сооружению и действию железных дорог. Лошади понесли, он был выброшен из кареты, остался невредим, но сильно потрясённым. Он выздоровел и даже доставил себе удовольствие быть очевидцем церимонии открытия железной дороги 31 июля 1854 года. Это был его утешительный день.

В самом начале нового года он стал страдать большей частью от расширения сердца и недостаточности дыхания. Тем не менее, он работал, когда мог, хотя его руку сводило и, наконец, нарушился его красивый ясный почерк.

В полном сознании почти до самого конца, Гаусс спокойно умер рано утром 23 февраля 1854 года на 78-м году жизни.

В честь Гаусса названы:

  • кратер на Луне;
  • одна из малых планет;
  • система единиц СГС именуется гауссовой;
  • единица измерения магнитной индукции в системе СГС;
  • одна из фундаментальных астрономических постоянных — постоянная Гаусса;
  • вулкан Гауссберг в Антарктиде;
  • смотровая башня в немецком городе Дрансфельд;
  • один из корпусов Колифорнийского университета;
  • одно из зданий университета в штате Айдахо (Инженерный колледж).
  • В Федеративной Республике Германии (1955, 1977) и Германской Демократической Республике (1977) выпущены почтовые марки посвященные памяти Гаусса.

Портрет Гаусса был размещён на банкноте в 10 немецких марок:

Имя Гаусса носят следующие научные объекты:

  • Задача Гаусса
  • Закон Гаусса
  • Интеграл вероятности Гаусса
  • Интерполяционная формула Гаусса
  • Квадратурная формула Гаусса
  • Распределение Гаусса-Лапласа
  • Гауссово кольцо
  • Гауссово число
  • Гауссовский процесс
  • Гауссовы логарифмы
  • Алгоритм Гаусса (вычисления даты пасхи)
  • Дискриминанты Гаусса
  • Гауссова кривизна
  • Лента Гаусса
  • Метод Гаусса (решения систем линейных уравнений)
  • Метод Гаусса - Жордана
  • Метод Гаусса - Зейделя
  • Нормальное или Гауссово распределение
  • Прямая Гаусса
  • Пушка Гаусса
  • Ряд Гаусса
  • Теорема Гаусса - Ванцеля
  • Фильтр Гаусса
  • Формула Гаусса - Бонне

По материалам статьи «Карл Гаусс» книги Д. Самина «100 великих учёных», книги Э.Т. Белл «Творцы математики» и Математического энциклопедического словаря.

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

С первых лет Гаусс отличался феноменальной памятью и выдающимися способностями к точным наукам. Всю свою жизнь он совершенствовал свои познания и систему счета, что принесло человечеству множество великих изобретений и бессмертных трудов.

Маленький принц математики

Карл родился в Брауншвейге, в Северной Германии. Это событие произошло 30 апреля 1777 года в семье бедного рабочего Герхарда Дидериха Гаусса. Хотя Карл был первым и единственным ребенком в семье, у отца редко находилось время на воспитание мальчика. Чтобы как-то прокормить семью, ему приходилось хвататься за любую возможность заработать: обустройство фонтанов, садовничество, каменные работы.

Большую часть своего детства Гаусс провел вместе с матерью Доротеей. Женщина души не чаяла в своем единственном сыне и, в дальнейшем, безумно гордилась его успехами. Она была веселой, умной и решительной женщиной, но, в силу своего простого происхождения, - неграмотной. Поэтому, когда маленький Карл, попросил научить его писать и считать, помочь ему оказалось нелегкой задачей.

Впрочем, мальчик не потерял энтузиазма. При любой удобной возможности он расспрашивал взрослых: «Что это за значок?», «Какая это буква?», «Как это прочитать?». Таким нехитрым способом он смог выучить весь алфавит и все цифры уже в трехлетнем возрасте. Тогда же ему поддались и самые простые операции счета: сложение и вычитание.

Как-то раз, когда Герхард снова снял подряд на каменные работы, он расплачивался с рабочими в присутствии маленького Карла. Внимательный ребенок в уме успел пересчитать все озвученные отцом суммы, и тут же нашел ошибку в его подсчетах. Герхард усомнился в правоте своего трехлетнего сына, но, пересчитав, действительно, обнаружил неточность.

Пряники вместо кнута

Когда Карлу исполнилось 7, родители отдали его в народную Екатерининскую школу. Всеми делами здесь заведовал немолодой и строгий учитель Бюттнер. Главным методом воспитания у него были телесные наказания (впрочем, как и везде в то время). В устрашение при себе Бюттнер носил внушительный хлыст, которым первое время попадало и маленькому Гауссу.

Сменить гнев на милость Карлу удалось достаточно быстро. Как только прошел первый урок по арифметике, Бюттнер кардинально изменил отношение к смышленому мальчику. Гауссу удавалось решать сложные примеры буквально на лету, используя оригинальные и нестандартные методы.

Так на очередном уроке Бюттнер задал задачу: сложить все числа от 1 до 100. Как только учитель закончил объяснять задание, Гаусс уже сдал свою табличку с готовым ответом. Позже он пояснил: «Я не складывал числа по порядку, а разделил их попарно. Если сложить 1 и 100 – получим 101. Если сложить 99 и 2 – тоже 101, и так далее. Я умножил 101 на 50 и получил ответ». После этого Гаусс стал любимым учеником.

Таланты мальчика заметил не только Бюттнер, но и его помощник – Христиан Бартельс. На свое небольшое жалование он покупал учебники по математике, по которым занимался сам и учил десятилетнего Карла. Эти занятия привели к ошеломительным результатам – уже в 1791 году мальчика представили герцогу Брауншвейгскому и его приближенным особам, как одного из самых талантливых и перспективных учеников.

Циркуль, линейка и Геттинген

Герцог был в восторге от юного дарования и пожаловал Гауссу стипендию в размере 10 талеров в год. Только благодаря этому, мальчику из бедной семьи удалось продолжить обучение в самой престижной школе – Каролинской коллегии. Там он получил необходимую подготовку и в 1895 году с легкостью поступил в Геттингенский университет.

Здесь Гаусс совершает одно из своих величайших открытий (по мнению самого ученого). Юноше удалось рассчитать построение 17-угольника и воспроизвести его с помощью линейки и циркуля. Другими словами, он решил уравнение х17- 1 = 0 в квадратичных радикалах. Это показалось Карлу настолько значимым, что в этот же день он начал вести дневник, в котором завещал начертить 17-угольник на своем надгробии.

Работая в этом же направлении, Гауссу удается построить правильный семи- и девятиугольник и доказать, что возможно построение многоугольников с 3, 5, 17, 257 и 65337 сторонами, а также с любым из этих чисел, умноженным на степень двойки. Позже эти числа нарекут «простыми гауссовыми».

Звезды на кончике карандаша

В 1798 году Карл покидает университет по неизвестным причинам и возвращается в родной Брауншвейг. При этом свою научную деятельность молодой математик и не думает приостанавливать. Наоборот, время, проведенное в родных краях, стало самым плодотворным периодом его работы.

Уже в 1799 году Гаусс доказывает основную теорему алгебры: «Количество действительных и комплексных корней многочлена равно его степени», исследует комплексные корни из единицы, квадратичные корни и вычеты, выводит и доказывает квадратичный закон взаимности. С этого же года он становится приват-доцентом университета Брауншвейга.

В 1801 году увидела свет книга «Арифметические исследования», где почти на 500 страницах ученый делится своими открытиями. В нее не вошло ни одного незаконченного исследования или сырого материала – все данные максимально точны и доведены до логического вывода.

В это же время он увлекается вопросами астрономии, а точнее математическими приложениями в этой области. Благодаря одному только правильному расчету, Гаусс нашел на бумаге то, что потеряли на небе астрономы – малую планету Цирреру (1801г, Дж. Пиацци). Этим методом было найдено еще несколько планет, в частности, Паллада (1802г, Г.В. Ольберс). Позже Карл Фридрих Гаусс станет автором бесценного труда под название «Теория движения небесных тел» (1809г) и множества исследований в области гипергеометрической функции и сходимости бесконечных рядов.

Браки без расчета

Здесь же, в Брауншвейге, Карл знакомится со своей первой женой – Иоанной Остгоф. Они поженились 22 ноября 1804 года и счастливо прожили на протяжении пяти лет. Иоанна успела родить Гауссу сына Иосифа и дочь Минну. При родах третьего ребенка – Луи – женщина скончалась. Вскоре погиб и сам младенец, и Карл остался один с двумя детьми. В письмах своим товарищам математик не раз утверждал, что эти пять лет в его жизни были «вечной весной», которая, к сожалению, закончилась.

Это несчастье в жизни Гаусса не стало последним. Примерно в то же время от смертельных ран погибает друг и наставник ученого – герцог Брауншвейгский. С тяжелым сердцем Карл покидает родину и возвращается в университет, где принимает кафедру математики и пост директора астрономической лаборатории.

В Геттингене он сближается с дочерью местного советника – Минной, которая была хорошей подругой его покойной жены. 4 августа 1810 года Гаусс женится на девушке, но их брак с самого начала сопровождают ссоры и конфликты. Из-за бурной личной жизни Карл даже отказался от места в Берлинской академии наук Минна родила ученому троих детей – двух сыновей и дочь.

Новые изобретения, открытия и ученики

Высокий пост, который Гаусс занимал в университете, обязывал ученого к преподавательской карьере. Его лекции отличались свежестью взглядов, а сам он был добрым и отзывчивым, что вызывало отклик у студентов. Тем не менее, сам Гаусс преподавать не любил и считал, что, уча других, он тратит свое время попусту.

В 1818 году Карл Фридрих Гаусс одним из первых начинает работу, связанную с неевклидовой геометрией. Побоявшись критики и насмешек, он так и не печатает свои открытия, тем не менее, яро поддерживает Лобачевского . Такая же участь постигла кватернионы, которые первоначально исследовал Гаусс под названием «мутации». Открытие приписали Гамильтону , который опубликовал свои труды, спустя 30 лет после смерти немецкого ученого. Эллиптические функции впервые появились в работах Якоби, Абеля и Коши , хотя основной вклад принадлежал именно Гауссу.

Спустя несколько лет Гаусс увлекается геодезией, проводит съемку Ганноверского королевства с помощью метода наименьших квадратов, описывает действительные формы земной поверхности и изобретает новый прибор – гелиотроп. Несмотря на простоту конструкции (зрительная труба и два плоских зеркала), это изобретения стало новым словом в геодезических измерениях. Результатом исследований в этой области стали труды ученого: «Общие исследования о кривых поверхностях» (1827г) и «Исследования о предметах высшей геодезии» (1842-47гг), а также понятие «гауссовой кривизны», которое дало начало дифференциальной геометрии.

В 1825 году Карл Фридрих совершает еще одно открытие, которое увековечило его имя – гауссовы комплексные числа. Он успешно использует их для решения уравнений высоких степеней, что позволило провести ряд исследований в области вещественных чисел. Основным результатом стал труд «Теория биквадратичных вычетов».

К концу жизни Гаусс изменил свое отношение к преподаванию и стал уделять своим ученикам не только лекционные часы, но и свободное время. Его работы и личный пример оказали огромное влияние на молодых математиков: Римана и Вебера. Дружба с первым привела к созданию «римановой геометрии», а со вторым – к изобретению электромагнитного телеграфа (1833 г).

В 1849 году за заслуги перед университетом, Гаусс был удостоен звания «почетный гражданин Геттингена». К этому времени в круг его друзей уже входят такие известные ученые, как Лобачевский, Лаплас , Ольберс, Гумбольд, Бартельс и Баум.

С 1852 года крепкое здоровье, которое досталось Карлу от отца, дало трещину. Избегая встреч с представителями медицины, Гаусс рассчитывал сам справиться с болезнью, но на этот раз его расчет оказался неверным. Он умер 23 февраля1855 года, в Геттингене, окруженный друзьями и единомышленниками, которые позже наградят его титулом короля математики.


Гаусс Карл Фридрих
Родился: 30 апреля 1777 года.
Умер: 23 февраля 1855 года.

Биография

Иоганн Карл Фридрих Гаусс (нем. Johann Carl Friedrich Gauß; 30 апреля 1777, Брауншвейг - 23 февраля 1855, Гёттинген) - немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков». Лауреат медали Копли (1838), иностранный член Шведской (1821) и Российской (1824) Академий наук, английского Королевского общества.

1777-1798 годы

Дед Гаусса был бедным крестьянином, отец - садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 50 \times 101=5050. До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледж Collegium Carolinum в Брауншвейге (1792-1795).

Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер. Это - наиболее плодотворный период в жизни Гаусса.

1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n - простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

1798 год: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатан только в 1801 году.

В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика - царица наук, а теория чисел - царица математики.

1798-1816 годы

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.

Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д"Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.

С 1799 года Гаусс - приват-доцент Брауншвейгского университета.

1801 год: избирается членом-корреспондентом Петербургской Академии наук.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методом, и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.

Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

1805 год: Гаусс женился на Иоганне Остгоф. У них было трое детей.

1806 год: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

1807 год: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму - 2000 франков - требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте.

1809 год: новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.

Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения третьего ребёнка. В Германии разруха и анархия. Это самые тяжёлые годы для Гаусса.

1810 год: новая женитьба - на Минне Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличивается до шести.

1810 год: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

1811 год: появляется новая комета. Гаусс быстро и очень точно рассчитывает её орбиту. Начинает работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

1812 год: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1815 год: публикует первое строгое доказательство основной теоремы алгебры.

1816-1855 годы

1820 год: Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в т. ч. методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления - высшей геодезии, и организовал съёмку местности и составление карт.

1821 год: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».

Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.

1824 год: избирается иностранным почётным членом Петербургской Академии наук.

1825 год: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.

1829 год: в замечательной работе «Об одном новом общем законе механики», состоящей всего из четырёх страниц, Гаусс обосновывает новый вариационный принцип механики - принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной».

1831 год: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году, в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

1832 год: «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.

1833 год: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

1837 год: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.

1839 год: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работам Лобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентом Гёттингенского королевского общества.

В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» изложил основы теории потенциала, включая ряд основополагающих положений и теорем - например, основную теорему электростатики (теорема Гаусса).

1840 год: в работе «Диоптрические исследования» Гаусс разработал теорию построения изображений в сложных оптических системах.

Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора.

Увековечение памяти

В честь Гаусса названы:
кратер на Луне;
малая планета № 1001 (Gaussia);
Гаусс - единица измерения магнитной индукции в системе СГС; сама эта система единиц часто именуется гауссовой;
одна из фундаментальных астрономических постоянных - постоянная Гаусса;
вулкан Гауссберг в Антарктиде.

С именем Гаусса связано множество теорем и научных терминов в математике, астрономии и физике, некоторые из них:
Алгоритм Гаусса вычисления даты Пасхи
Гауссова кривизна
Гауссовы целые числа
Гипергеометрическая функция Гаусса
Интерполяционная формула Гаусса
Квадратурная формула Гаусса - Лагерра
Метод Гаусса для решения систем линейных уравнений.
Метод Гаусса - Жордана
Метод Гаусса - Зейделя
Метод Гаусса (численное интегрирование)
Нормальное распределение, или распределение Гаусса
Отображение Гаусса
Признак Гаусса
Проекция Гаусса - Крюгера
Прямая Гаусса
Пушка Гаусса
Ряд Гаусса
Система единиц Гаусса для измерения электромагнитных величин.
Теорема Гаусса - Ванцеля о построении правильных многоугольников и числах Ферма.
Теорема Гаусса - Остроградского в векторном анализе.
Теорема Гаусса - Лукаса о корнях комплексного многочлена.
Формула Гаусса - Бонне о гауссовой кривизне.

Карл Фридрих Гаусс, сын бедняка и необразованной матери, самостоятельно разгадал загадку даты собственного рождения и определил её как 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г., когда ему был всего 21 год, хотя издан он будет лишь в 1801 г. Работа эта имела первостепенную важность для совершенствования теории чисел как научной дисциплины, и представила эту область знаний в том виде, в каком мы знаем её сегодня. Потрясающие способности Гаусса так поразили герцога Брауншвейгского, что он отправляет Карла на обучение в Карлов коллегиум (ныне – Брауншвейгский технический университет), который Гаусс посещает с 1792 г. по 1795 г. В 1795-1798 г.г. Гаусс переходит в Гёттингский университет. За свои университетские годы математик доказал немало значимых теорем.

Начало трудовой деятельности

1796 г. оказывается самым успешным как для самого Гаусса, так и для его теории чисел. Одно за другим, он совершает важные открытия. 30 марта, например, он открывает правила построения правильного семнадцатиугольника. Он совершенствует модулярную арифметику и в значительной мере упрощает манипуляции в теории чисел. 8 апреля Гаусс доказывает закон взаимности квадратичных вычетов, что позволяет математикам найти решение любого квадратичного уравнения модулярной арифметики. 31 мая он предлагает теорему простых чисел, давая тем самым доступное объяснение каким образом простые числа распределяются среди целых чисел. 10 июля учёный делает открытие, что любое целое положительное число может быть выражено суммой не более трёх треугольных чисел.

В 1799 г. Гаусс заочно защищает диссертацию, в которой приводит новые доказательства теоремы, гласящей, что каждая целая рациональная алгебраическая функция с одной переменной может быть представлена произведением действительных чисел первой и второй степени. Он подтверждает фундаментальную теорему алгебры, которая гласит, что каждый непостоянный многочлен от одной переменной со сложными коэффициентами имеет хотя бы один комплексный корень. Его усилия в значительной мере упрощают концепцию комплексных чисел.

А в это время итальянский астроном Джузеппе Пиацци открывает карликовую планету Цереру, которая мгновенно исчезает в солнечном свечении, но, через несколько месяцев, когда Пиацци ожидает снова увидеть её на небе, Церера не появляется. Гаусс, которому только исполнилось 23 года, узнав о проблеме астронома, берётся за её разрешение. В декабре 1801 г., через три месяца напряжённой работы, он определяет позицию Цереры на звёздном небе с погрешностью всего в полградуса.

В 1807 г. гениальный учёный Гаусс получает пост профессора астрономии и главы астрономической обсерватории Гёттингена, который он будет занимать всю оставшуюся жизнь.

Поздние годы

В 1831 г. Гаусс знакомится с профессором физики Вильгельмом Вебером, и знакомство это оказалось плодотворным. Их совместный труд приводит к новым открытиям в области магнетизма и установлению правил Кирхгофа в области электричества. Сформулировал Гаусс и закон собственного имени. В 1833 г. Вебер и Гаусс изобретают первый электромеханический телеграф, связавший обсерваторию с Институтом физики Гёттингена. Вслед за этим, во дворе астрономической обсерватории строится обсерватория магнетическая, в которой Гаусс, совместно с Вебером, основывает «Магнетический клуб», занимавшийся замерами магнитного поля Земли в разных точках планеты. Гаусс также успешно разрабатывает технику определения горизонтальной составляющей магнитного поля Земли.

Личная жизнь

Личная жизнь Гаусса была чередой трагедий, начиная с преждевременной смерти его первой жены, Джоанны Остофф, в 1809 г., и последовавшей за ней кончины одного из их детей, Луи. Гаусс женится снова, на лучшей подруге своей первой жены Фредерике Вильгельмине Вальдек, но и она, после долгой болезни, умирает. От двух браков у Гаусса родилось шестеро детей.

Смерть и наследие

Гаусс умер в 1855 г. в Гёттингене, Ганновер (ныне – Нижняя Саксония в Германии). Тело его было кремировано и захоронено в Альбанифридхофе. Согласно результатам изучения его мозга Рудольфом Вагнером, мозг Гаусса имел массу 1.492 г и площадь сечения мозга 219.588 мм² (34.362 квадратных дюйма), что научно доказывает, что Гаусс был гением.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку



Рекомендуем почитать

Наверх