Модуль корни уравнения равны. Как решать уравнения с модулем: основные правила

Кухни 26.09.2019
Кухни

Точилкина Юлия

В работе представлены различные способы решения уравнений с модулем.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 59»

Уравнения с модулем

Реферативная работа

Выполнила ученица 9А класса

МБОУ «СОШ № 59» г. Барнаула

Точилкина Юлия

Руководитель

Захарова Людмила Владимировна,

учитель математики

МБОУ «СОШ № 59» г. Барнаула

Барнаул 2015

Введение

Я учусь в девятом классе. В этом учебном году мне предстоит сдавать итоговую аттестацию за курс основной школы. Для подготовки к экзамену мы приобрели сборник Д. А. Мальцева Математика. 9 класс. Просматривая сборник, я обнаружила уравнения, содержащие не только один, но и несколько модулей. Учитель объяснила мне и моим одноклассникам, что такие уравнения называют уравнениями с «вложенными модулями». Такое название показалось для нас необычным, а решение на первый взгляд, довольно сложным. Так появилась тема для моей работы «Уравнения с модулем». Я решила глубже изучить эту тему, тем более, что она мне пригодится при сдаче экзаменов в конце учебного года и думаю, что понадобится в 10 и 11 классах. Все сказанное выше определяет актуальность выбранной мною темы.

Цель работы :

  1. Рассмотреть различные методы решения уравнений с модулем.
  2. Научиться решать уравнения, содержащие знак абсолютной величины, различными методами

Для работы над темой были сформулированы следующие задачи:

Задачи:

  1. Изучить теоретический материал по теме «Модуль действительного числа».
  2. Рассмотреть методы решения уравнений и закрепить полученные знания решением задач.
  3. Полученные знания применять при решении различных уравнений, содержащих знак модуля в старших классах

Объект исследования: методы решения уравнений с модулем

Предмет исследования: уравнения с модулем

Методы исследования:

Теоретические : изучение литературы по теме исследования;

Internet – информации.

Анализ информации, полученной при изучении литературы; результатов полученных при решении уравнений с модулем различными способами.

Сравнение способов решения уравнений предмет рациональности их использования при решении различных уравнений с модулем.

«Мы начинаем думать, когда обо что-то стукнемся». Поль Валери.

1. Понятия и определения.

Понятие «модуль» широко применяется во многих разделах школьного курса математики, например, в изучении абсолютной и относительной погрешностей приближенного числа; в геометрии и физике изучаются понятия вектора и его длины (модуля вектора). Понятия модуля применяется в курсах высшей математики, физики и технических наук, изучаемых в высших учебных заведениях.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это слово имеет множество значений и применяется не только в математике, физике и технике, но и в архитектуре, программировании и других точных науках.

Считают, что термин предложил использовать Котс, ученик Ньютона. Знак модуля был введен в XIX веке Вейерштрассом.

В архитектуре модуль– исходная единица измерения, устанавливаемая для данного архитектурного сооружения.

В технике – это термин, применяемый в различных областях техники, служащий для обозначения различных коэффициентов и величин, например, модуль упругости, модуль зацепления…

В математике модуль имеет несколько значений, но я буду рассматривать его как абсолютную величину числа.

Определение1 : Модулем (абсолютной величиной) действительного числа а называется само это число, если а ≥0, или противоположное число – а , если а модуль нуля равен нулю.

При решении уравнений с модулем, удобно использовать свойства модуля.

Рассмотрим доказательства 5,6, 7 свойств.

Утверждение 5. Равенство │ а+в │=│ а │+│ в │ является верным, если ав ≥ 0.

Доказательство. Действительно, после возведения обеих частей данного равенства в квадрат, получим, │ а+в │²=│ а │²+2│ ав │+│ в │²,

а²+ 2 ав+в²=а²+ 2│ ав │+ в², откуда │ ав │= ав

А последнее равенство будет верным при ав ≥0.

Утверждение 6. Равенство │ а-в │=│ а │+│ в │ является верным при ав ≤0.

Доказательство. Для доказательства достаточно в равенстве

│ а+в │=│ а │+│ в │ заменить в на - в, тогда а· (- в ) ≥0, откуда ав ≤0.

Утверждение 7.Равенство │ а │+│ в │= а+в выполняется при а ≥0 и в ≥0.

Доказательство . Рассмотрев четыре случая а ≥0 и в ≥0; а ≥0 и в а в ≥0; а в а ≥0 и в ≥0.

(а-в ) в ≥0.

Геометрическая интерпретация

|а| - это расстояние на координатной прямой от точки с координатой а , до начала координат.

|-а| |а|

А 0 а х

Геометрическое толкование смысла |а| наглядно подтверждает, что |-а|=|а|

Если а 0, то на координатной прямой существует две точки а и –а, равноудаленные от нуля, модули которых равны.

Если а=0, то на координатной прямой |а| изображается точкой 0.

Определение 2: Уравнение с модулем – это уравнение, содержащее переменную под знаком абсолютной величины (под знаком модуля). Например: |х +3|=1

Определение 3: Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

2. Методы решения

Из определения и свойств модуля вытекают основные методы решения уравнений с модулем:

  1. «Раскрытие» модуля (т.е. использование определения);
  2. Использование геометрического смыла модуля (свойство 2);
  3. Графический метод решения;
  4. Использование равносильных преобразований (свойства 4,6);
  5. Замена переменной (при этом используется свойство 5).
  6. Метод интервалов.

Я решила достаточно большое количество примеров, но в работе представляю вашему вниманию только несколько, на мой взгляд, типичных примеров, решенных различными способами, потому что остальные дублируют друг друга и чтобы понять, как решать уравнения с модулем нет необходимости рассматривать все решенные примеры.

РЕШЕНИЕ УРАВНЕНИЙ | f(x)| = a

Рассмотрим уравнение | f(x)| = a, а R

Уравнение данного вида может быть решено по определению модуля:

Если а то уравнение корней не имеет.

Если а= 0, то уравнение равносильно f(x)=0.

Если а>0, то уравнение равносильно совокупности

Пример. Решить уравнение |3х+2|=4.

Р е ш е н и е.

|3х+2|=4, тогда 3х+2=4,

3х+2= -4;

Х=-2,

Х=2/3

О т в е т: -2;2/3.

РЕШЕНИЕ УРАВНЕНИЙ с ИСПОЛЬЗОВАНИЕМ ГЕОМЕТРИЧЕСКОГО СВОЙСТВА МОДУЛЯ.

Пример 1. Решить уравнение /х-1/+/х-3/=6.

Решение.

Решить данное уравнение значит найти все такие точки на числовой оси Ох, для каждой из которых сумма расстояний от нее до точек с координатами 1 и 3 равна 6.

Ни одна точка из отрезка не удовлетворяет этому условию, т.к. сумма указанных расстояний равна 2. Вне этого отрезка есть две точки это 5 и -1.

1 1 3 5

Ответ: -1;5

Пример 2. Решить уравнение |х 2 +х-5|+|х 2 +х-9|=10.

Решение.

Обозначим х 2 +х-5= а, тогда / а /+/ а-4 /=10. Найдем точки на оси Ох такие, что для каждой из них сумма расстояний до точек с координатами 0 и 4 равна 10. Этому условию удовлетворяют -4 и 7.

3 0 4 7

Значит х 2 +х-5= 4 х 2 +х-5=7

Х 2 +х-2=0 х 2 +х-12=0

Х 1= 1, х 2= -2 х 1= -4, х 2= 3 Ответ:-4;-2; 1; 3.

РЕШЕНИЕ УРАВНЕНИЙ | f (x )| = | g (x )|.

  1. Так как | а |=|в |, если а= в, то уравнение вида | f (x )| = | g (x )| равносильно совокупности

Пример1.

Решить уравнение | x –2| = |3 – х |.

Р е ш е н и е.

Данное уравнение равносильно двум уравнениям:

х – 2 = 3 – х (1) и х – 2 = –3 + х (2)

2 х = 5 –2 = –3 – неверно

х = 2,5 уравнение не имеет решений.

О т в е т: 2,5.

Пример 2.

Решить уравнение |х 2 +3х-20|= |х 2 -3х+ 2|.

Р е ш е н и е.

Так как обе части уравнения неотрицательны, то возведение в квадрат является равносильным преобразованием:

(х 2 +3х-20) 2 = (х 2 -3х+2) 2

(х 2 +3х-20) 2 - (х 2 -3х+2) 2 =0,

(х 2 +3х-20-х 2 +3х-2) (х 2 +3х-20+х 2 -3х+2)=0,

(6х-22)(2х 2 -18)=0,

6х-22=0 или 2х 2 -18=0;

Х=22/6, х=3, х=-3.

Х=11/3

Ответ: -3; 3; 11/3.

РЕШЕНИЕ УРАВНЕНИЙ ВИДА | f (x )| = g (x ).

Отличие данных уравнений от | f(x)| = a в том, что в правой части тоже переменная. А она может быть как положительной, так и отрицательной. Поэтому в ее неотрицательности нужно специально убедиться, ведь модуль не может равняться отрицательному числу (свойство №1 )

1 способ

Решение уравнения | f (x )| = g (x ) сводится к совокупности решения уравнений и проверке справедливости неравенства g (x )>0 для найденных значений неизвестной.

2 способ (по определению модуля)

Так как | f (x )| = g (x ), если f (x) = 0; | f (x )| = - f (x ), если f (x )

Пример.

Решить уравнение |3 х –10| = х – 2.

Р е ш е н и е.

Данное уравнение равносильно совокупности двух систем:

О т в е т: 3; 4.

РЕШЕНИЕ УРАВНЕНИЙ ВИДА |f 1 (x)|+|f 2 (x)|+…+|f n (x)|=g(х)

Решение уравнений данного вида основано на определении модуля. Для каждой функции f 1 (x), f 2 (x), …, f n (x) необходимо найти область определения, ее нули и точки разрыва, разбивающие общую область определения на промежутки, в каждом из которых функции f 1 (x), f 2 (x), …, f n (x) сохраняют свой знак. Далее используя определение модуля, для каждой из найденных областей получим уравнение, которое необходимо решить на данном промежутке. Данный метод получил название « метод интервалов »

Пример .

Решить уравнение |х-2|-3|х+4|=1.

Р е ш е н и е.

Найдем точки, в которых подмодульные выражения равны нулю

х-2=0, х+4=0,

х=2; х=-4.

Разобьем числовую прямую на промежутки х

Решение уравнения сводится к решению трех систем:

О т в е т: -15, -1,8.

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ УРАВНЕНИЙ, СОДЕРЖАЩИХ ЗНАК МОДУЛЯ.

Графический способ решения уравнений является приближенным, так ка точность зависит от выбранного единичнрого отрезка, толщины карандаша, углов под которыми пересекаются линии и т.д. Но этот метод позволяет оценивать сколько решений имеет то или иное уравнение.

Пример . Решить графически уравнение |x - 2| + |x - 3| + |2x - 8| = 9

Решение. Построим в одной системе координат графики функций

у=|x - 2| + |x - 3| + |2x - 8| и у=9.

Для построения графика необходимо рассмотреть данную функцию на каждом промежутке (-∞; 2); [ 3/2 ; ∞ )

Ответ: (- ∞ ; 4/3] [ 3/2 ; ∞ )

Метод равносильных преобразований мы использовали и при решении уравнений | f (x )| = | g (x )|.

УРАВНЕНИЯ СО «СЛОЖНЫМ МОДУЛЕМ»

Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя различные методы.

Пример 1.

Решить уравнение ||||x| – |–2| –1| –2| = 2.

Решение.

По определению модуля, имеем:

Решим первое уравнение.

  1. ||| x |–2| –1| = 4

| x | – 2 = 5;

| x | = 7;

х = 7.

Решим второе уравнение.

  1. ||| x | –2| –1| = 0,

|| x | –2| = 1,

| x | –2 = 1 ,

| x | = 3 и | x | = 1,

х = 3; х = 1.

О т в е т: 1; 3; 7.

Пример 2.

Решить уравнение |2 – |x + 1|| = 3.

Р е ш е н и е.

Решим уравнение с помощью введения новой переменной.

Пусть | x + 1| = y , тогда |2 – y | = 3, отсюда

Выполним обратную замену:

(1) | x + 1| = –1 – нет решений.

(2) | x + 1| = 5

О т в е т: –6; 4.

Пример3 .

Сколько корней имеет уравнение | 2 | х | -6 | = 5 - х?

Решение. Решим уравнение, используя схемы равносильности.

Уравнение | 2 | х | -6 | = 5 -х равносильно системе:

МБОУ СОШ №17 г. Иванова

«Уравнения с модулем»
Методическая разработка

Составлена

учителем математики

Лебедевой Н.В.

20010 г.

Пояснительная записка

Глава 1. Введение

Раздел 2. Основные свойства Раздел 3. Геометрическая интерпретация понятия модуля числа Раздел 4. График функции у = |х| Раздел 5. Условные обозначения

Глава 2. Решение уравнений, содержащих модуль

Раздел 1.Уравнения вида |F(х)| = m (простейшие) Раздел 2. Уравнения вида F(|х|) = m Раздел 3. Уравнения вида |F(х)| = G(х) Раздел 4. Уравнения вида |F(х)| = ± F(х) (красивейшие) Раздел 5. Уравнения вида |F(х)| = |G(х)| Раздел 6. Примеры решения нестандартных уравнений Раздел 7. Уравнения вида |F(х)| + |G(х)| = 0 Раздел 8. Уравнения вида |а 1 х ± в 1 | ± |а 2 х ± в 2 | ± …|а n х ± в n | = m Раздел 9. Уравнения, содержащие несколько модулей

Глава 3. Примеры решения различных уравнений с модулем.

Раздел 1. Тригонометрические уравнения Раздел 2. Показательные уравнения Раздел 3. Логарифмические уравнения Раздел 4. Иррациональные уравнения Раздел 5. Задания повышенной сложности Ответы к упражнениям Список литературы

Пояснительная записка.

Понятие абсолютной величины (модуля) действительного числа является одной из существенных его характеристик. Это понятие имеет широкое распространение в различных разделах физико-математических и технических наук. В практике преподавания курса математики в средней школе в соответствии с Программой МО РФ понятие «абсолютная величина числа» встречается неоднократно: в 6 – м классе вводиться определение модуля, его геометрический смысл; в 8 – м классе формируется понятие абсолютной погрешности, рассматривается решение простейших уравнений и неравенств, содержащих модуль, изучаются свойства арифметического квадратного корня; в 11 – м классе понятие встречается в разделе «Корень n -ой степени». Опыт преподавания показывает, что учащиеся часто сталкиваются с трудностями при решении заданий, требующих знания данного материала, а нередко пропускают, не приступая к выполнению. В текстах экзаменационных заданий за курс 9 – ого и 11 – ого классов также включены подобные задания. Кроме того, требования, которые предъявляют к выпускникам школ Вузы отличаются, а именно, более высокого уровня, чем требования школьной программы. Для жизни в современном обществе очень важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В процессе решения задач с модулями требуется умение применять такие приёмы, как обобщение и конкретизация, анализ, классификация и систематизация, аналогия. Решение подобных заданий позволяет проверить знание основных разделов школьного курса, уровень логического мышления, первоначальные навыки исследовательской деятельности. Данная работа посвящена одному из разделов – решению уравнений, содержащих модуль. Она состоит из трёх глав. В первой главе вводятся основные понятия и наиболее важные теоретические выкладки. Во второй главе предлагаются девять основных типов уравнений, содержащих модуль, рассматриваются методы их решения, разбираются примеры разного уровня сложности. В третьей главе предлагаются более сложные и нестандартные уравнения (тригонометрические, показательные, логарифмические и иррациональные). К каждому типу уравнений есть упражнения для самостоятельного решения (ответы и указания прилагаются). Основное назначение данной работы – это оказание методической помощи преподавателям при подготовке к урокам и при организации факультативных курсов. Материал также может быть использован в качестве учебного пособия для старшеклассников. Задания, предлагаемые в работе, интересны и не всегда просты в решении, что позволяет сделать учебную мотивацию учащихся более осознанной, проверить свои способности, повысить уровень подготовки выпускников школ к поступлению в Вузы. Дифференцированный подбор предлагаемых упражнений предполагает переход от репродуктивного уровня усвоения материала к творческому, а также возможность научить применять свои знания при решении нестандартных задач.

Глава 1. Введение.

Раздел 1. Определение абсолютной величины .

Определение : Абсолютной величиной (модулем) действительного числа а называется неотрицательное число: а или –а. Обозначение: а Запись читается следующим образом: «модуль числа а» или «абсолютная величина числа а»

а, если а > 0

а│ = │ 0, если а = 0 (1)

- а, если а
Примеры: 1) │2,5│ = 2,5 2) │-7│ = 7 3) │1 - √2│ = √2 – 1
    Раскрыть модуль выражения:
а) │х - 8│, если х > 12 б) │2х + 3│, если х ≤ -2 │х – 8│= х – 8 │ 2х + 3│= - 2х – 3

Раздел 2. Основные свойства.

Рассмотрим основные свойства абсолютной величины. Свойство №1: Противоположные числа имеют равные модули, т.е. │а│=│- а│ Покажем верность равенства. Запишем определение числа – а : │- а│ = (2) Сравним совокупности (1) и (2). Очевидно, что определения абсолютных величин чисел а и – а совпадают. Следовательно, │а│=│- а│
При рассмотрении следующих свойств ограничимся их формулировкой, так как их доказательство приводится в Свойство №2: Абсолютная величина суммы конечного числа действительных чисел не превосходит суммы абсолютных величин слагаемых: │а 1 + а 2 +…+ а n │ ≤│а 1 │+│а 2 │+ … + │а n │ Свойство №3: Абсолютная величина разности двух действительных чисел не превосходит суммы их абсолютных величин: │а - в│ ≤│а│+│в│ Свойство №4: Абсолютная величина произведения конечного числа действительных чисел равна произведению абсолютных величин множителей: │а · в│=│а│·│в│ Свойство №5: Абсолютная величина частного действительных чисел равна частному их абсолютных величин:

Раздел 3. Геометрическая интерпретация понятия модуля числа.

Каждому действительному числу можно поставить в соответствие точку на числовой прямой, которая будет геометрическим изображением данного действительного числа. Каждой точке на числовой прямой соответствует её расстояние от начала отсчёта, т.е. длина отрезка от начала отсчёта до данной точки. Это расстояние рассматривается всегда как величина неотрицательная. Поэтому длина соответствующего отрезка и будет геометрической интерпретацией абсолютной величины данного действительного числа

Представленная геометрическая иллюстрация наглядно подтверждает свойство №1, т.е. модули противоположных чисел равны. Отсюда легко понимается справедливость равенства: │х – а│= │а - х│. Также более очевидным становиться решение уравнения │х│= m, где m ≥ 0, а именно х 1,2 = ± m. Примеры: 1) │х│= 4 х 1,2 = ± 4 2) │х - 3│= 1
х 1,2 = 2; 4

Раздел 4. График функции у = │х│

Область определения данной функции все действительные числа.

Раздел 5. Условные обозначения.

В дальнейшем при рассмотрении примеров решения уравнений будут использованы следующие условные обозначения: { - знак системы [ - знак совокупности При решение системы уравнений (неравенств) находится пересечение решений входящих в систему уравнений (неравенств). При решении совокупности уравнений (неравенств) находится объединение решений входящих в совокупность уравнений (неравенств).

Глава 2. Решение уравнений, содержащих модуль.

В этой главе мы рассмотрим алгебраические способы решения уравнений, содержащих один или более модуль.

Раздел 1. Уравнения вида │F (х)│= m

Уравнение данного вида называется простейшим. Оно имеет решение тогда и только тогда, когда m ≥ 0. По определению модуля, исходное уравнение равносильно совокупности двух уравнений: │F (х)│= m
Примеры:
1. Решите уравнение: │7х - 2│= 9


Ответ: х 1 = - 1; х 2 = 1 4 / 7 2
│х 2 + 3х + 1│= 1

х 2 + 3х + 2 = 0 х 2 +3х = 0 х 1 = -1; х 2 = -2 х · (х + 3) = 0 х 1 = 0; х 2 = -3 Ответ: сумма корней равна - 2 .3
│х 4 -5х 2 + 2│= 2 х 4 – 5х 2 = 0 х 4 – 5х 2 + 4 = 0 х 2 · (х 2 – 5) = 0 обозначим х 2 = m, m ≥ 0 х = 0; ±√5 m 2 – 5m + 4 = 0 m = 1; 4 – оба значения удовлетворяют условию m ≥ 0 х 2 = 1 х 2 = 4 х = ± 1 х = ± 2 Ответ: количество корней уравнения 7. Упражнения:
1. Решите уравнение и укажите сумму корней: │х - 5│= 32 . Решите уравнение и укажите меньший корень: │х 2 + х│= 03 . Решите уравнение и укажите больший корень: │х 2 – 5х + 4│= 44 .Решите уравнение и укажите целый корень: │2х 2 – 7х + 6│= 15 .Решите уравнение и укажите количество корней: │х 4 – 13х 2 + 50│= 14

Раздел 2. Уравнения вида F(│х│) = m

Аргумент функции в левой части находится под знаком модуля, а правая часть не зависит от переменной. Рассмотрим два способа решения уравнений данного вида.1 способ: По определению абсолютной величины исходное уравнение равносильно совокупности двух систем. В каждой из которых накладывается условие на подмодульное выражение. F (│х│) = m
Так как функция F(│х│) – чётная на всей области определения, то корни уравнений F(х) = m и F(- х) = m – это пары противоположных чисел. Поэтому достаточно решить одну из систем (при рассмотрении примеров указанным способом будет приводиться решение одной системы).2 способ: Применение метода введения новой переменной. При этом вводиться обозначение │х│= а, где а ≥ 0. Данный способ менее объёмный по оформлению.
Примеры: 1 . Решите уравнение: 3х 2 – 4│х│= - 1 Воспользуемся введением новой переменной. Обозначим │х│= а, где а ≥ 0. Получим уравнение 3а 2 - 4а + 1 = 0 Д = 16 – 12 = 4 а 1 = 1 а 2 = 1 / 3 Возвращаемся к исходной переменной: │х│=1 и │х│= 1 / 3 . Каждое уравнение имеет два корня. Ответ: х 1 = 1; х 2 = - 1; х 3 = 1 / 3 ; х 4 = - 1 / 3 . 2. Решите уравнение: 5х 2 + 3│х│- 1 = 1 / 2 │х│ + 3х 2
Найдём решение первой системы совокупности: 4х 2 + 5х – 2 =0 Д = 57 х 1 = -5+√57 / 8 х 2 = -5-√57 / 8 Заметим, что х 2 не удовлетворяет условию х ≥ 0. Решением второй системы будет число, противоположное значению х 1 . Ответ: х 1 = -5+√57 / 8 ; х 2 = 5-√57 / 8 .3 . Решите уравнение: х 4 – │х│= 0 Обозначим │х│= а, где а ≥ 0. Получим уравнение а 4 – а = 0 а · (а 3 – 1) = 0 а 1 = 0 а 2 = 1 Возвращаемся к исходной переменной: │х│=0 и │х│= 1 х = 0; ± 1 Ответ: х 1 = 0; х 2 = 1; х 3 = - 1.
Упражнения: 6. Решите уравнение: 2│х│ - 4,5 = 5 – 3 / 8 │х│ 7 . Решите уравнение, в ответе укажите количество корней: 3х 2 - 7│х│ + 2 = 0 8 . Решите уравнение, в ответе укажите целые решения: х 4 + │х│ - 2 = 0

Раздел 3. Уравнения вида │F(х)│ = G(х)

Правая часть уравнения данного вида зависит от переменной и, следовательно, имеет решение тогда и только тогда, когда правая часть функция G(х) ≥ 0. Исходное уравнение можно решить двумя способами:1 способ: Стандартный, основан на раскрытии модуля исходя из его определения и заключается в равносильном переходе к совокупности двух систем. │F (х)│ = G (х)

Данный способ рационально использовать в случае сложного выражения для функции G(x) и мене сложного – для функции F(х), так как предполагается решение неравенств с функцией F(х).2 способ: Состоит в переходе к равносильной системе, в которой накладывается условие на правую часть. │F (x )│= G (x )

Данный способ удобнее применять, если выражение для функции G(х) мене сложное, чем для функции F(х), так как предполагается решение неравенства G(х) ≥ 0. Кроме того, в случае нескольких модулей этот способ рекомендуется применять второй вариант. Примеры: 1. Решите уравнение: │х + 2│= 6 -2х
(1 способ) Ответ: х = 1 1 / 3 2.
│х 2 – 2х - 1│= 2·(х + 1)
(2 способ) Ответ: Произведение корней – 3.
3. Решите уравнение,в ответе укажите сумму корней:
│х - 6│= х 2 - 5х + 9

Ответ: сумма корней равна 4.
Упражнения: 9. │х + 4│= - 3х10. Решите уравнение, в ответе укажите число решений:│х 2 + х - 1│= 2х – 111 . Решите уравнение, в ответе укажите произведение корней:│х + 3│= х 2 + х – 6

Раздел 4. Уравнения вида │F(x)│= F(x) и │F(x)│= - F(x)

Уравнения данного вида иногда называют «красивейшими». Так как правая часть уравнений зависит от переменной, решения существуют тогда и только тогда, когда правая часть неотрицательна. Поэтому исходные уравнения равносильны неравенствам:
│F(x)│= F(x) F(x) ≥ 0 и │F(x)│= - F(x) F(x) Примеры: 1 . Решите уравнение, в ответе укажите меньший целый корень: │5х - 3│= 5х – 3 5х – 3 ≥ 0 5х ≥ 3 х ≥ 0,6 Ответ: х = 1 2. Решите уравнение, в ответе укажите длину промежутка: │х 2 - 9│= 9 – х 2 х 2 – 9 ≤ 0 (х – 3) (х + 3) ≤ 0 [- 3; 3] Ответ: длина промежутка равна 6. 3 . Решите уравнение, в ответе укажите число целых решений: │2 + х – х 2 │= 2 + х – х 2 2 + х – х 2 ≥ 0 х 2 – х – 2 ≤ 0 [- 1; 2] Ответ: 4 целых решения. 4 . Решите уравнение, в ответе укажите наибольший корень:
│4 – х -
│= 4 – х –
х 2 – 5х + 5 = 0 Д = 5 х 1,2 =
≈ 1,4

Ответ: х = 3.

Упражнения: 12. Решите уравнение, в ответе укажите целый корень: │х 2 + 6х + 8│= х 2 + 6х + 813. Решите уравнение, в ответе укажите число целых решений: │13х – х 2 - 36│+ х 2 – 13х + 36 = 014. Решите уравнение, в ответе укажите целое число, не являющееся корнем уравнения:

Раздел 5. Уравнения вида │F(x)│= │G(x)│

Так как обе части уравнения неотрицательные, то решение предполагает рассмотрение двух случаев: подмодульные выражения равны или противоположны по знаку. Следовательно, исходное уравнение равносильно совокупности двух уравнений: │F (x )│= │ G (x )│
Примеры: 1. Решите уравнение, в ответе укажите целый корень: │х + 3│=│2х - 1│
Ответ: целый корень х = 4. 2. Решите уравнение:х – х 2 - 1│=│2х – 3 – х 2 │
Ответ: х = 2. 3 . Решите уравнение, в ответе укажите произведение корней:




Корниуравнения 4х 2 + 2х – 1 = 0 х 1,2 = - 1±√5 / 4 Ответ: произведение корней равно – 0,25. Упражнения: 15 . Решите уравнение, в ответе укажите целое решение:│х 2 – 3х + 2│= │х 2 + 6х - 1│ 16. Решите уравнение, в ответе укажите меньший корень:│5х - 3│=│7 - х│ 17 . Решите уравнение, в ответе укажите сумму корней:

Раздел 6. Примеры решения нестандартных уравнений

В данном разделе мы рассмотрим примеры нестандартных уравнений, при решении которых абсолютная величина выражения раскрывается по определению. Примеры:

1. Решите уравнение, в ответе укажите сумму корней: х · │х│- 5х – 6 = 0
Ответ: сумма корней равна 1 2. . Решите уравнение, в ответе укажите меньший корень: х 2 - 4х ·
- 5 = 0
Ответ: меньший корень х = - 5. 3. Решите уравнение:

Ответ: х = -1. Упражнения: 18. Решите уравнение и укажите сумму корней: х · │3х + 5│= 3х 2 + 4х + 3
19. Решите уравнение: х 2 – 3х =

20. Решите уравнение:

Раздел 7. Уравнения вида │F(x)│+│G(x)│=0

Нетрудно заметить, что в левой части уравнения данного вида сумма неотрицательных величин. Следовательно, исходное уравнение имеет решение тогда и только тогда, когда оба слагаемых одновременно равны нулю. Уравнение равносильно системе уравнений: │F (x )│+│ G (x )│=0
Примеры: 1 . Решите уравнение:
Ответ: х = 2. 2. Решите уравнение: Ответ: х = 1. Упражнения: 21. Решите уравнение: 22 . Решите уравнение, в ответе укажите сумму корней: 23 . Решите уравнение, в ответе укажите количество решений:

Раздел 8. Уравнения вида │а 1 х + в 1 │±│а 2 х + в 2 │± … │а n х +в n │= m

Для решения уравнений данного вида применяется метод интервалов. Если его решать последовательным раскрытием модулей, то получим n совокупностей систем, что очень громоздко и неудобно. Рассмотрим алгоритм метода интервалов: 1). Найти значения переменной х , при которых каждый модуль равен нулю (нули подмодульных выражений):
2). Найденные значения отметить на числовой прямой, которая разбивается на интервалы (количество интервалов соответственно равно n +1 ) 3). Определить, с каким знаком раскрывается каждый модуль на каждом из полученных интервалов (при оформлении решения можно использовать числовую прямую, отметив на ней знаки) 4). Исходное уравнение равносильно совокупности n +1 систем, в каждой из которых указывается принадлежность переменной х одному из интервалов. Примеры: 1 . Решите уравнение, в ответе укажите наибольший корень:
1). Найдём нули подмодульных выражений: х = 2; х = -3 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах:
х – 2 х – 2 х – 2 - - + - 3 2 х 2х + 6 2х + 6 2х + 6 - + + 3)
- нет решений Уравнение имеет два корня. Ответ: наибольший корень х = 2. 2. Решите уравнение, в ответе укажите целый корень:
1). Найдём нули подмодульных выражений: х = 1,5; х = - 1 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах: х + 1 х + 1 х + 1 - + +
-1 1,5 х 2х – 3 2х – 3 2х – 3 - - +
3).
Последняя система не имеет решений, следовательно, уравнение имеет два корня. В ходе решения уравнения следует обратить внимание на знак « - » перед вторым модулем. Ответ: целый корень х = 7. 3. Решите уравнение, в ответе укажите сумму корней: 1). Найдём нули подмодульных выражений: х = 5; х = 1; х = - 2 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах: х – 5 х – 5 х – 5 х – 5 - - - +
-2 1 5 х х – 1 х – 1 х – 1 х – 1 - - + + х + 2 х + 2 х + 2 х + 2 - + + +
3).
Уравнение имеет два корня х = 0 и 2. Ответ: сумма корней равна 2. 4 . Решите уравнение: 1). Найдём нули подмодульных выражений: х = 1; х = 2; х = 3. 2). Определим, с каким знаком раскрывается каждый модуль на полученных интервалах. 3).
Объединим решения первых трёх систем. Ответ: ; х = 5.
Упражнения: 24. Решите уравнение:
25. Решите уравнение, в ответе укажите сумму корней: 26. Решите уравнение, в ответе укажите меньший корень:27. Решите уравнение, в ответе укажите больший корень:

Раздел 9. Уравнения, содержащие несколько модулей

Уравнения, содержащие несколько модулей, предполагают наличие абсолютных величин в подмодульных выражениях. Основной принцип решения уравнений данного вида – это последовательное раскрытие модулей, начиная с «внешнего». В ходе решения используются приёмы, рассмотренные в разделах №1, №3.

Примеры: 1. Решите уравнение:
Ответ: х = 1; - 11. 2. Решите уравнение:
Ответ: х = 0; 4; - 4. 3. Решите уравнение, в ответе укажите произведение корней:
Ответ: произведение корней равно – 8. 4. Решите уравнение:
Обозначим уравнения совокупности (1) и (2) и рассмотрим решение каждого из них отдельно для удобства оформления. Так как оба уравнения содержат более одного модуля, то удобнее осуществить равносильный переход к совокупностям систем.(1)

(2)


Ответ:
Упражнения: 36. Решите уравнение, в ответе укажите сумму корней: 5 │3х-5│ = 25 х 37. Решите уравнение, если корней более одного, в ответе укажите сумму корней: │х + 2│ х – 3х – 10 = 1 38. Решите уравнение: 3 │2х -4│ = 9 │х│ 39. Решите уравнение, в ответе укажите количество корней на : 2 │ sin х│ = √2 40 . Решите уравнение, в ответе укажите количество корней:

Раздел 3. Логарифмические уравнения.

Перед решением следующих уравнений необходимо повторить свойства логарифмов и логарифмической функции. Примеры: 1. Решите уравнение, в ответе укажите произведение корней: log 2 (х+1) 2 + log 2 │x+1│ = 6 О.Д.З. х+1≠0 х≠ - 1

1 случай: если х ≥ - 1, то log 2 (x+1) 2 + log 2 (x+1) = 6 log 2 (x+1) 3 = log 2 2 6 (x+1) 3 = 2 6 x+1 = 4 x = 3 – удовлетворяет условию х ≥ - 1 2 случай: если х log 2 (x+1) 2 + log 2 (-x-1) = 6 log 2 (x+1) 2 + log 2 (-(x+1)) = 6 log 2 (-(x+1) 3) = log 2 2 6- (x+1) 3 = 2 6- (x+1) = 4 x = - 5 – удовлетворяет условию х - 1
Ответ: произведение корней равно – 15.
2. Решите уравнение, в ответе укажите сумму корней: lg
О.Д.З.



Ответ: сумма корней равна 0,5.
3. Решите уравнение: log 5
О.Д.З.

Ответ: х = 9. 4. Решите уравнение: │2 + log 0,2 x│+ 3 = │1 + log 5 x│ О.Д.З. х > 0 Воспользуемся формулой перехода к другому основанию. │2 - log 5 x│+ 3 = │1 + log 5 x│
│2 - log 5 x│- │1 + log 5 x│= - 3 Найдём нули подмодульных выражений: х = 25; х = Эти числа делят область допустимых значений на три интервала, поэтому уравнение равносильно совокупности трёх систем.
Ответ: }

Рекомендуем почитать

Наверх