Определение динамического давления в воздуховоде. Порядок расчета потерь давления в воздуховодах Расчет сопротивления воздуховода калькулятор

Детская 19.10.2019
Детская

Не всегда есть возможность пригласить специалиста для проектирования системы инженерных сетей. Что делать если во время ремонта или строительства вашего объекта потребовался расчет воздуховодов вентиляции? Можно ли его произвести своими силами?

Расчет позволит составить эффективную систему, которая будет обеспечивать бесперебойную работу агрегатов, вентиляторов и приточных установок. Если все подсчитано правильно, то это позволит уменьшить траты на закупку материалов и оборудования,а в последствии и на дальнейшее обслуживание системы.

Расчет воздуховодов системы вентиляции для помещений можно проводить разными методами. Например, такими:

  • постоянной потери давления;
  • допустимых скоростей.

Типы и виды воздуховодов

Перед расчетом сетей нужно определить из чего они будут изготовлены. Сейчас применяются изделия из стали, пластика, ткани, алюминиевой фольги и др. Часто воздуховоды изготовляют из оцинкованной или нержавеющей стали, это можно организовать даже в небольшом цеху. Такие изделия удобно монтировать и расчет такой вентиляции не вызывает проблем.

Кроме этого, воздуховоды могут различаться по внешнему виду. Они могут быть квадратного, прямоугольного и овального сечения. Каждый тип обладает своими достоинствами.

  • Прямоугольные позволяют сделать системы вентиляции небольшой высоты или ширины, при этом сохраняется нужная площади сечения.
  • В круглых системах меньше материала,
  • Овальные совмещают плюсы и минусы других видов.

Для примера расчета выберем круглые трубы из жести. Это изделия, которые используют для вентиляции жилья, офисных и торговых площадей. Расчет будем проводить одним из методов, который позволяет точно подобрать сеть воздуховодов и найти ее характеристики.

Способ расчета воздуховодов методом постоянных скоростей

Нужно начинать с плана помещений.

Используя все нормы определяют нужное количество воздуха в каждую зону и рисуют схему разводки. На ней показываются все решетки, диффузоры, изменения сечения и отводы. Расчет производится для самой удаленной точки системы вентиляции, поделенной на участки, ограниченные ответвлениями или решетками.

Расчет воздуховода для монтажа заключается в выборе нужного сечения по всей длине, а так же нахождение потери давления для подбора вентилятора или приточной установки. Исходными данными являются значения количества проходящего воздуха в сети вентиляции. Используя схему, проведём расчет диаметра воздуховода. Для этого понадобится график потери давления.
Для каждого типа воздуховодов график разный. Обычно, производители предоставляют такую информацию для своих изделий, либо можно найти ее в справочниках. Рассчитаем круглые жестяные воздуховоды, график для которых показан на нашем рисунке.

Номограмма для выбора размеров

По выбранному методу задаемся скоростью воздуха каждого участка. Она должна быть в пределах норм для зданий и помещений выбранного назначения. Для магистральных воздуховодов приточной и вытяжной вентиляции рекомендуются такие значения:

  • жилые помещения – 3,5–5,0 м/с;
  • производство – 6,0–11,0 м/с;
  • офисы – 3,5–6,0 м/с.

Для ответвлений:

  • офисы – 3,0–6,5 м/с;
  • жилые помещения – 3,0–5,0 м/с;
  • производство – 4,0–9,0 м/с.

Когда скорость превышает допустимую, уровень шума повышается до некомфортного для человека уровня.

После определения скорости (в примере 4,0 м/с) находим нужное сечение воздуховодов по графику. Там же есть потери давления на 1 м сети, которые понадобятся для расчета. Общие потери давления в Паскалях находим произведением удельного значения на длину участка:

Руч=Руч·Руч.

Элементы сети и местные сопротивления

Имеют значение и потери на элементах сети (решетки, диффузоры, тройники, повороты, изменение сечения и т. д.). Для решеток и некоторых элементов эти значения указаны в документации. Их можно рассчитать и произведением коэффициента местного сопротивления (к. м. с.) на динамическое давление в нем:

Рм. с.=ζ·Рд.

Где Рд=V2·ρ/2 (ρ – плотность воздуха).

К. м. с. определяют из справочников и заводских характеристик изделий. Все виды потерь давлений суммируем для каждого участка и для всей сети. Для удобства это сделаем табличным методом.

Сумма всех давлений будет приемлимой для этой сети воздуховодов, а потери на ответвлениях должны быть в пределах 10% от полного располагаемого давления. Если разница больше, необходимо на отводах смонтировать заслонки или диафрагмы. Для этого производим расчет нужного к. м. с. по формуле:

ζ= 2Ризб/V2,

где Ризб – разница располагаемого давления и потерь на ответвлении. По таблице выбираем диаметр диафрагмы.

Нужный диаметр диафрагмы для воздуховодов.

Правильный расчет воздуховодов вентиляции позволит подобрать нужный вентилятор выбрав у производителей по своим критериям. Используя найденное располагаемое давление и общий расход воздуха в сети, это будет сделать несложно.

Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.

В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.

Поведение среды внутри воздухопровода

Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.

Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах .

При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними — 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.

Вернуться к оглавлению

Физический смысл параметра

Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое — снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.

Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.

В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.

Вернуться к оглавлению

Расчеты параметра по формулам

На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:

Рд = v2γ / 2g

В этой формуле:

  • Рд — динамическое давление в кгс/м2;
  • V — скорость движения воздуха в м/с;
  • γ — удельная масса воздуха на этом участке, кг/м3;
  • g — ускорение силы тяжести, равное 9.81 м/с2.

Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:

Рд = ρ(v2 / 2)

Здесь ρ — плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной — 1.2 кг/м3.

Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета — определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.

Сопротивление трению на 1 м круглого канала рассчитывается по формуле:

R = (λ / d) Рд, где:

  • Рд — динамическое давление в кгс/м2 или Па;
  • λ — коэффициент сопротивления трению;
  • d — диаметр воздуховода в метрах.

Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:

HB = ∑(Rl + Z)

Здесь параметры:

  1. HB (кгс/м2) — общие потери в вентиляционной системе.
  2. R — потери на трение на 1 м канала круглого сечения.
  3. l (м) — длина участка.
  4. Z (кгс/м2) — потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).

Вернуться к оглавлению

Определение параметров местных сопротивлений вентиляционной системы

В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:

  1. Z = ∑ξ Рд.

Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.

Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.

Чтобы воздухообмен в доме был «правильным», еще на стадии составления проекта вентиляции нужен аэродинамический расчет воздуховодов.

Воздушные массы, движущиеся по каналам вентиляционной системы, при проведении расчетов принимаются в качестве несжимаемой жидкости. И подобное вполне допускается, ибо слишком большое давление в воздуховодах не образуется. По сути, давление образуется в результате трения воздуха о стенки каналов, а еще при появлении сопротивлений локального характера (к таковым можно отнести его – давления – скачки на местах изменения направления, при соединении/разъединении воздушных потоков, на участках, где установлены регулирующие приборы или же там, где изменяется диаметр вентиляционного канала).

Обратите внимание! В понятие аэродинамического расчета входит определение сечения каждого из участков сети вентиляции, обеспечивающих движение потоков воздуха. Более того, определяется также нагнетание, образующееся вследствие этих движений.

В соответствии с многолетним опытом можно смело заявить, что порой некоторые из данных показателей во время проведения расчета уже известны. Ниже приведены ситуации, которые нередко встречаются в подобного рода случаях.

  1. Показатель сечения поперечных каналов в вентиляционной системе уже известен, требуется определить давление, которое может потребоваться для того, чтобы нужное количество газа перемещалось. Это зачастую случается в тех магистралях кондиционирования, где размеры сечения были основаны на характеристиках технического или же архитектурного характера.
  2. Давление мы уже знаем, но нужно определить поперечное сечение сети для обеспечения вентилируемого помещения требуемым объемом кислорода. Данная ситуация присуща сетям естественной вентиляции, в которых уже наличествующий напор невозможно изменить.
  3. Неизвестно ни об одном из показателей, следовательно, нам необходимо определить и напор в магистрали, и поперечное сечение. Такая ситуация и встречается в большинстве случаев в строительстве домов.

Особенности аэродинамических расчетов

Ознакомимся с общей методикой проведения такого рода расчетов при условии, если и сечение, и давление нам неизвестны. Сразу оговоримся, что аэродинамический расчет следует проводить исключительно после того, как будет определено требуемые объемы воздушных масс (они будут проходить по системе воздушного кондиционирования) и спроектировано приблизительное месторасположение каждого из воздуховодов в сети.

И дабы провести расчет, необходимо вычертить аксонометрическую схему, в которой будет присутствовать перечень всех элементов сети, а также их точные габариты. В соответствии с планом вентиляционной системы рассчитывается суммарная длина воздухопроводов. После этого всю систему следует разбить на отрезки с однородными характеристиками, по которым (только по отдельности!) и будет определен расход воздуха. Что характерно, для каждого из однородных участков системы следует провести отдельный аэродинамический расчет воздуховодов, потому что в каждом из них имеется своя скорость перемещения воздушных потоков, а также перманентный расход. Все полученные показатели необходимо внести в уже упомянутую выше аксонометрическую схему, а потом, как вы уже наверняка догадались, необходимо выбрать главную магистраль.

Как определить скорость в вентиляционных каналах?

Как можно судить из всего, сказанного выше, в качестве главной магистрали необходимо выбирать ту цепь последовательных отрезков сети, которая является самой протяженной; при этом нумерация должна начинаться исключительно с самого удаленного участка. Что же касается параметров каждого из участков (а к таковым относится расход воздуха, длина участка, его порядковый номер и проч.), то их также следует занести в таблицу проведения расчетов. Затем, когда с внесением будет покончено, подбирается форма поперечного сечения и определяются его – сечения – габариты.

LP/VT = FP.

Что обозначают эти аббревиатуры? Попытаемся разобраться. Итак, в нашей формуле:

  • LP – это конкретный расход воздуха на выбранном участке;
  • VT – это скорость, с которой воздушные массы по этому участку движутся (измеряется в метрах за секунду);
  • FP – это и есть нужная нам площадь поперечного сечения канала.

Что характерно, во время определения скорости движения необходимо руководствоваться, в первую очередь, соображениями экономии и шумности всей вентиляционной сети.

Обратите внимание! По полученному таким образом показателю (речь идет о поперечном сечении) необходимо подобрать воздуховод со стандартными величинами, а фактическое его сечение (обозначается аббревиатурой FФ) должно быть максимально близким к рассчитанному ранее.

LP/ FФ = VФ.

Получив показатель требуемой скорости, необходимо рассчитать, насколько будет уменьшаться давление в системе вследствие трения о стенки каналов (для этого необходимо использовать специальную таблицу). Что же касается локального сопротивления для каждого из участков, то их следует рассчитывать по отдельности, после чего суммировать в общий показатель. Затем, суммировав локальное сопротивление и потери по причине трения, можно получить общий показатель потерь в системе кондиционирования воздуха. В дальнейшем это значение будет использоваться для того, чтобы вычислить требуемое количество газовых масс в каналах вентиляции.

Воздушно-отопительный агрегат

Ранее мы рассказывали о том что из себя представляет воздушно-отопительный агрегат, говорили о его приемуществах и сферах применения, в дополнение к этой статье советуем вам ознакомится с данной информацией

Как рассчитать давление в вентиляционной сети

Для того чтобы определить предполагаемое давление для каждого отдельного участка, необходимо воспользоваться приведенной ниже формулой:

Н х g (РН – РВ) = DPE.

Теперь попытаемся разобраться, что обозначает каждая из этих аббревиатур. Итак:

  • Н в данном случае обозначает разницу в отметках шахтного устья и заборной решетки;
  • РВ и РН – это показатель плотности газа, как снаружи, так и изнутри вентиляционной сети, соответственно (измеряется в килограммах на кубический метр);
  • наконец, DPE – это показатель того, каким должно быть естественное располагаемое давление.

Продолжаем разбирать аэродинамический расчет воздуховодов. Для определения внутренней и наружной плотности необходимо воспользоваться справочной таблицей, при этом должен быть учтен и температурный показатель внутри/снаружи. Как правило, стандартная температура снаружи принимается как плюс 5 градусов, причем вне зависимости от того, в каком конкретном регионе страны планируются строительные работы. А если температура снаружи будет более низкой, то в результате увеличится нагнетание в вентиляционную систему, из-за чего, в свою очередь, объемы поступающих воздушных масс будут превышены. А если температура снаружи, напротив, будет более высокой, то давление в магистрали из-за этого снизится, хотя данную неприятность, к слову, вполне можно компенсировать посредством открывания форточек/окон.

Что же касается главной задачи любого описываемого расчета, то она заключается в выборе таких воздуховодов, где потери на отрезках (речь идет о значении?(R*l*?+Z)) будут ниже текущего показателя DPE либо, как вариант, хотя бы равняться ему. Для пущей наглядности приведем описанный выше момент в виде небольшой формулы:

DPE ? ?(R*l*?+Z).

Теперь более детально рассмотрим, что обозначают использованные в данной формуле аббревиатуры. Начнем с конца:

  • Z в данном случае – это показатель, обозначающий снижение скорости движения воздуха вследствие местного сопротивления;
  • ? – это значение, точнее, коэффициент того, какова шероховатость стенок в магистрали;
  • l – еще одно простое значение, которое обозначает длину выбранного участка (измеряется в метрах);
  • наконец, R – это показатель потерь на трение (измеряется в паскалях на один метр).

Что же, с этим разобрались, теперь еще выясним немного о показателе шероховатости (то есть?). Этот показатель зависит только от того, какие материалы были использованы при изготовлении каналов. Стоит отметить, что скорость перемещения воздуха также может быть разной, поэтому следует учитывать и этот показатель.

Скорость – 0,4 метра за секунду

В таком случае показатель шероховатости будет следующим:

  • у штукатурки с применением армирующей сетки – 1,48;
  • у шлакогипса – около 1,08;
  • у обычного кирпича – 1,25;
  • а у шлакобетона, соответственно, 1,11.

Скорость – 0,8 метра за секунду

Здесь описываемые показатели будут выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки – 1,69;
  • для шлакогипса – 1,13;
  • для обыкновенного кирпича – 1,40;
  • наконец, для шлакобетона – 1,19.

Немного увеличим скорость воздушных масс.

Скорость – 1,20 метра за секунду

Для этого значения показатели шероховатости будут такими:

  • у штукатурки с применением армирующей сетки – 1,84;
  • у шлакогипса – 1,18;
  • у обычного кирпича – 1,50;
  • и, следовательно, у шлакобетона – где-то 1,31.

И последний показатель скорости.

Скорость – 1,60 метра за секунду

Здесь ситуация будет выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки шероховатость будет составлять 1,95;
  • для шлакогипса – 1,22;
  • для обыкновенного кирпича – 1,58;
  • и, наконец, для шлакобетона – 1,31.

Обратите внимание! С шероховатостью разобрались, но стоит отметить еще один важный момент: при этом желательно учитывать и незначительный запас, колеблющийся в пределах десяти-пятнадцати процентов.

Разбираемся с общим вентиляционным расчетом

Производя аэродинамический расчет воздуховодов, вы обязаны учитывать все характеристики шахты вентиляции (эти характеристики приведены ниже в виде списка).

  1. Динамическое давление (для его определения используется формула – DPE?/2 = Р).
  2. Расход воздушных масс (он обозначается буквой L и измеряется в метрах кубических за час).
  3. Потери давления в результате трения воздуха о внутренние стенки (обозначаются буквой R, измеряются в паскалях на метр).
  4. Диаметр воздуховодов (для расчета данного показателя используется следующая формула: 2*а*b/(а+b); в этой формула значения а, b являются размерами сечения каналов и измеряются в миллиметрах).
  5. Наконец, скорость – это V, измеряется в метрах за секунду, о чем мы уже упоминали ранее.

>

Что же касается непосредственно последовательности действий при вычислении, то она должна выглядеть примерно следующим образом.

Шаг первый. Вначале следует определить требуемую площадь канала, для чего используется приведенная ниже формула:

I/(3600xVpek) = F.

Разбираемся со значениями:

  • F в данном случае – это, разумеется, площадь, которая измеряется в квадратных метрах;
  • Vpek – это желательная скорость движения воздуха, которая измеряется в метрах за секунду (для каналов принимается скорость в 0,5-1,0 метр за секунду, для шахт – около 1,5 метра).

Шаг третий. Следующим шагом считается определение соответствующего диаметра воздуховода (обозначается буквой d).

Шаг четвертый. Затем определяются остальные показатели: давление (обозначается как Р), скорость движения (сокращенно V) и, следовательно, уменьшение (сокращенно R). Для этого необходимо использовать номограммы согласно d и L, а также соответствующие таблицы коэффициентов.

Шаг пятый . Используя уже другие таблицы коэффициентов (речь идет о показателях местного сопротивления), требуется определить, насколько уменьшится воздействие воздуха вследствие локального сопротивления Z.

Шаг шестой. На последнем этапе расчетов нужно определить общие потери на каждом отдельном отрезке вентиляционной магистрали.

Обратите внимание на один важный момент! Так, если общие потери ниже уже наличествующего давления, то такую систему вентиляции вполне можно считать эффективной. А вот если потери превышают показатель давления, то может потребоваться установка специальной дроссельной диафрагмы в вентиляционной системе. Благодаря этой диафрагме будет гаситься избыточный напор.

Также отметим, что если вентиляционная система рассчитывается на обслуживание сразу нескольких помещений, для которых давление воздуха обязано быть разным, то во время произведения расчетов требуется учитывать и показатель разряжения либо подпора, которое необходимо добавить к общему показателю потерь.

Видео – Как производить расчеты с помощью программы «ВИКС-СТУДИЯ»

Аэродинамический расчет воздуховодов считается обязательной процедурой, важной составляющей планирования вентиляционных систем. Благодаря данному расчету можно узнать, насколько эффективно вентилируются помещения при том или ином сечении каналов. А эффективное функционирование вентиляции, в свою очередь, обеспечивает максимальный комфорт вашего проживания в доме.

Пример проведения расчетов. Условия в данном случае следующие: здание административного характера, имеет три этажа.

Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Вернуться к оглавлению

С чего начинать?

Диаграмма потери напора на каждый метр воздуховода.

Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.

Вернуться к оглавлению

Порядок вычислений

Общая формула расчета потерь давления в воздуховодах для всей вентиляционной системы выглядит следующим образом:

H B = ∑(Rl + Z), где:

  • H B — потери давления во всей системе воздуховодов, кгс/м²;
  • R — сопротивление трению 1 м воздухопровода эквивалентного сечения, кгс/м²;
  • l — протяженность участка, м;
  • Z — величина давления, теряемого воздушным потоком в местных сопротивлениях (фасонных элементах и дополнительном оборудовании).

Примечание: значение площади поперечного сечения воздуховода, участвующее в расчете, принимается изначально как для круглой формы канала. Сопротивление трению для каналов прямоугольной формы определяется по площади сечения, эквивалентному круглому.

Расчет начинают от самого отдаленного участка №1, затем переходят ко второму участку и так далее. Результаты вычислений по каждому участку складываются, о чем и говорит математический знак суммирования в расчетной формуле. Параметр R зависит от диаметра канала (d) и динамического давления в нем (Р д), а последнее, в свою очередь, зависит от скорости движения воздушного потока. Коэффициент абсолютной шероховатости стенок (λ) традиционно принимается как для воздухопровода из оцинкованной стали и составляет 0,1 мм:

R = (λ / d) Р д.

Пользоваться этой формулой в процессе расчета потерь давления не имеет смысла, так как значения R для различных скоростей воздуха и диаметров уже просчитаны и являются справочными величинами (Р. В. Щекин, И.Г. Староверов — справочники). Поэтому просто необходимо найти эти значения в соответствии с конкретными условиями перемещения воздушных масс и подставить их в формулу. Еще один показатель, динамическое давление Р д, который связан с параметром R и участвует в дальнейшем подсчете местных сопротивлений, тоже величина справочная. Учитывая эту связь между двумя параметрами, в справочных таблицах они приводятся совместно.

Значение Z потерь давления в местных сопротивлениях рассчитывают по формуле:

Z = ∑ξ Р д.

Знак суммирования обозначает, что нужно сложить результаты расчета по каждому из местных сопротивлений на заданном участке. Кроме уже известных параметров, в формуле присутствует коэффициент ξ. Его величина безразмерна и зависит от вида местного сопротивления. Значения параметра для многих элементов вентиляционных систем посчитаны либо определены опытным путем, поэтому находятся в справочной литературе. Коэффициенты местного сопротивления вентиляционного оборудования зачастую указывают сами производители, определив их значения опытным путем на производстве или в лаборатории.

Вычислив длину участка №1, количество и вид местных сопротивлений, следует правильно определить все параметры и подставить их в расчетные формулы. Получив результат, переходить ко второму участку и далее, до самого вентилятора. При этом не следует забывать о том участке воздухопровода, который расположен уже за вентиляционной установкой, ведь напора вентилятора должно хватить и на преодоление его сопротивления.

Закончив расчеты по самой протяженной ветви, производят такие же по соседней ветке, потом по следующей и так до самого конца. Обычно эти все ветви имеют много общих участков, поэтому вычисления пойдут быстрее. Целью определения потерь давления на всех ветвях есть их общая увязка, ведь вентилятор должен распределить свой расход равномерно по всей системе. То есть в идеале потери давления в одной ветви должны отличаться от другой не более чем на 10%. Простыми словами, это значит, что самое ближнее к вентилятору ответвление должно иметь самое высокое сопротивление, а дальнее — самое низкое. Если это не так, рекомендуется вернуться к пересчету диаметров воздуховодов и скоростей движения воздуха в них.

Распределение давлений в системе вентиляции необходимо знать при наладке и регулировании системы, при определении расходов на отдельных участках системы и при решении многих других вентиляци­онных задач.

Распределение давлений в системах вентиляции с механическим побуждением движения воздуха. Рассмотрим воздуховод с вентилято­ром (рис. XI.3). В сечении 1-/ статическое давление равно нулю (т. е. равно давлению воздуха на уровне расположения воздуховода). Полное давление в этом сечении равно динамическому давлению рді, определяемому по формуле (XI.1). В сечении II-II статическое давле­ние рстіі>0 (численно равно потерям давления на трение между сече­ниями II-II и I-/). При постоянном сечении воздуховода линия ста­тического давления - прямая. Линия полного давления также прямая,

Параллельная линии рст. Расстояние между этими линиями по вертика­ли определяет динамическое давление рДі.

В диффузоре, расположенном между сечениями II-II и III-III, происходит изменение скорости потока. Динамическое давление по ходу воздуха уменьшается. В связи с этим статическое давление изменяется и может даже возрасти, как это показано на рисунке (рстіі>рстііі).

Полное давление в сечении III-III, создаваемое вентилятором, те­ряется на трение Дртр и в местных сопротивлениях (диффузоре Лрдиф, при выходе Арных). Общие потери давления со стороны нагнета­ния равны:

Статическое давление вне воздуховода со стороны всасывания рав­но нулю. В непосредственной близости от отверстия в пределах всасы­вающего факела поток воздуха уже обладает кинетической энергией. Разрежение в пределах всасывающего факела незначительно.

На входе в воздуховод скорость потока увеличивается, а значит увеличивается и кинетическая энергия потока. Следовательно, по зако­ну сохранения энергии потенциальная энергия потока должна умень­шиться. С учетом потерь давления Л/?ПОт в любом сечении со стороны всасывания

Per = 0 - рд - Дрпот - (XI. 24)

Во всасывающем воздуховоде так же, как и со стороны нагнетания, полное давление равно разности давления в начале воздуховода и по­терь давления до рассматриваемого сечения:

Рп = 0-ДрпОт. (XI.25)

Из формул (XI.24) и (XI.25) следует, что в каждом сечении воз­духовода со стороны всасывания величины р0т и рп меньше нуля. По абсолютному значению статическое давление больше полного давле­ния, однако формула (XI.2) справедлива и для этого случая.

Линия статического давления идет ниже линии полного давления. Резкое понижение линии статического давления после сечения VI-VI объясняется сужением потока на входе в воздуховод вследствие обра­зования вихревой зоны. Между сечениями V-V и IV-IV на схеме по­казан конфузор с поворотом. Снижение линии статического давления между этими сечениями происходит вследствие увеличения как скоро­сти потока в конфузоре, так и потерь давления. Эпюры статического давления на рис. XI.3 заштрихованы.

В точке Б наблюдается наименьшее в системе воздуховодов значе­ние полного давления. Численно оно равно потерям давления со сто­роны всасывания:

А - полного и статического в нагнетательном воздуховоде; б - то же, во всасывающем воздухово­де; в - динамического в нагнетательном воздуховоде; г - динамического во всасывающем воздухо­воде

Вентилятор создает перепад давления, равный разности макси­мального и минимального значения полного давления (рлл - Рпб)> увеличивая энергию 1 м3 воздуха, проходящего через него, на величину

Давление, создаваемое вентилятором, затрачивается на преодоле­ние сопротивления движению воздуха по воздуховодам:

Рвеит = ДРвс + Дрнагн. (XI. 27)

Профессор П. Н. Каменев предложил строить эпюры давлений на всасывающем воздуховоде от абсолютного нуля дав"лений (абсолютного вакуума). При этом построение линий рст. абс и рп. абс полностью соот­ветствует случаю нагнетания.

Давления в воздуховодах измеряют микроманометром. Для изме­рения статического давления шланг от микроманометра присоединяют к штуцеру, прикрепленному к стенке воздуховода, а для измерения пол­ного давления - к пневмометрической трубке Пито, отверстие которой направлено навстречу потоку (рис. XI.4, а, б).

Разность полного и статического давлений равна значению динами­ческого давления. Эту разность можно замерить непосредственно ми­кроманометром, как это показано на рис. XI.4, в, г. По значению рд определяют скорость, м/с:

V = V2prfp, (XI. 28)

По которой вычисляют расход воздуха в воздуховоде, м3/ч:

L = ЗбООу/. (XI. 29)

Распределение давлений в системах вентиляции с естественным по­буждением движения воздуха. Особенностями таких систем являются вертикальное расположение их каналов в здании, малые значения рас­полагаемых давлений и, следовательно, небольшие скорости. Работа систем с естественным побуждением движения воздуха зависит от кон­структивных особенностей системы и здания, разности плотности на­ружного и внутреннего воздуха, скорости и направления ветра. Однако при выборе конструктивных размеров отдельных элементов системы вентиляции (сечений каналов и шахт, площадей жалюзийных решеток) достаточно провести расчет для случая, когда здание не оказывает влияния на работу .

А - эпюры абсолютных аэростатичес­ких давлений в канале, закрытом за­глушками 1 - внутри канала; 2 - сна­ружи канала; б - эпюра избыточных давлений в том же канале; в - эпюры избыточных давлений прн движении воздуха по каналу; г - эпюры избыточ­ных давлений в шахте и в присоединен­ном к ней «широком канале»; д-эпюры избыточных давлений в канале и шах­те при наличии ответвления; е - эпюры избыточных давлений при естествен­ном побуждении движения воздуха в системе вентиляции многоэтажного здания; ж - эпюры избыточных давле­ний при механическом побуждении дви­жения воздуха; (рст> Рп~ линии соот­ветственно статического н полного давления внутри канала и шахты; Рн - линия статического давления сна­ружи канала н шахты)

Рассмотрим простейший случай, когда вертикальный канал высо­той Як, заполненный теплым воздухом с температурой tB, закрыт свер­ху и снизу заглушками. Канал окружен наружным воздухом с темпе­ратурой ta.

Предположим, что давление внутри и снаружи канала на уровне его верха равно ра (для обеспечения этого условия достаточно оставить в верхней заглушке небольшое отверстие). Тогда в соответствии с зако­ном Паскаля абсолютное давление на любом уровне (на расстоянии h от верха канала) равно: снаружи рст н=ра4-^рн£, а внутри рстк=ра4- --hpBg. Распределение абсолютных давлений внутри канала (линия 1) и снаружи него (линия 2) показано на рис. XI.5, а.

В системе «канал - окружающий воздух» можно пользоваться ус­ловными значениями избыточных давлений, т. е. условно принять аэро­статическое давление внутри канала на любом уровне за нуль. Эпюра этих давлений снаружи канала имеет форму треугольника (рис. XI.5,6J. Основанием треугольника

Дрк = Нк Дрg

Является располагаемое давление, Па, определяющее движение воздуха по каналу.

При движении воздуха по каналу (рис. XI.5, в) потери давления складываются из потерь на входе, на трение и на выходе. На рис. XI.5, в показано распределение полного и статического давлений (в избыточных относительно условного нуля давлениях). Динамическое давление рд равно разности рп и рст. Статическое давление (эпюра его на рисунке заштрихована) по всей длине канала меньше избыточного аэростати­ческого давления снаружи канала рн. В некоторых случаях в канале могут наблюдаться ЗОНЫ С Рст >рн. Например, в канале перед сужением (рис. XI.5, г) при определенных условиях статическое давление может превышать давление рн. Через неплотности в этой зоне канала будет происходить утечка загрязненного воздуха.

Если вертикальный вентиляционный канал объединяет два (рис. XI, 5,(3) или более (рис. XI.5, е) ответвлений, то рекомендуется присоединять их не на уровне входа воздуха в ответвление, а несколько выше (на один, два этажа и более). Эта рекомендация дана с учетом накопленного опыта эксплуатации. При присоединении ответвления на уровне точки А вместо уровня точки Б увеличивается располагаемое давление Дротв (см. рис. XI.5, д); следовательно, увеличивается также сопротивление канала и устойчивость работы системы.

На рис. XI.5, д, е эпюры статического давления заштрихованы. Пол­ное давление убывает по высоте до значения потерь на выходе, а дина­мическое давление при постоянном сечении канала увеличивается по вы­соте, так как после присоединения ответвления расход в канале увели­чивается.

В последнее время внедряются системы вентиляции с вертикальны­ми каналами и механическим побуждением движения воздуха. В этих системах воздух движется под действием вентилятора и гравитацион­ных сил. Построение распределения давлений в таких системах анало­гично рассмотренному выше. Особенность заключается в том, что ста­тическое давление перед вентилятором определяется разрежением, создаваемым вентилятором (см. схему на рис. XI.5,ж). В этом случае располагаемое давление для движения воздуха в системе



Рекомендуем почитать

Наверх