Органические вещества и их химические свойства. Удивительный мир органических веществ

Профессионалы 24.09.2019
Профессионалы

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

1. Предмет и задачи органической химии. Значение её для фармации.

2. Классификация органических соединений.

3. Принципы тривиальной и рациональной номенклатуры.

4. Принципы номенклатуры ИЮПАК.

Предмет и задачи органической химии.

Органическая химия - это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

Родоначальными соединениями в органической химии признаны углеводороды , состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.


Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Например, свойства спиртов определяются наличием гидроксогруппы (- ОН ), свойства аминов - аминогруппы (- NH 2 ), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН ) и так далее.

Таблица 1 . Основные классы органических соединений

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН 2 ОН - СНОН - СН 2 ОН - глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН 3 - СН(ОН) - СООН - молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.

Органические соединения наиболее часто классифицируются по двум критериям - по строению углеродного скелета молекулы или по наличию в молекуле органического соединения функциональной группы.

Классификацию органических молекул по строению углеродного скелета можно представить в виде схемы:

Ациклические соединения – это соединения с незамкнутой углеродной цепью. Их основу составляют алифатические соединения (от греческого aleiphatos масло, жир, смола) – углеводороды и их производные, углеродные атомы которых связаны между собой в открытые неразветвленные или разветвленные цепи.

Циклические соединения – это соединения, содержащие замкнутую цепь. Карбоциклические соединения в составе цикла содержат только атомы углерода, гетероциклические в составе цикла, кроме атомов углерода, содержат один или несколько гетероатомов (атомы N,O,S и др.).

В зависимости от природы функциональной группы производные углеводородов делят на классы органических соединений. Функциональная группа – это атом или группа атомов, как правило, неуглеводородного характера, которые определяют типичные химические свойства соединения и его принадлежность к определенному классу органических соединений. В качестве функциональной группы у ненасыщенных молекул выступают двойные или тройные связи.

Название функциональной группы

Название класса соединений

Общая формула класса

Карбоксильная -COOH

Карбоновые кислоты

Сульфоновая -SO 3 H

Сульфокислоты

Оксогруппа (карбонильная)

Альдегиды

Оксогруппа (карбонильная)

Гидроксильная -OH

Тиольная (меркапто) -SH

Тиолы (меркаптаны)

F, -Cl, -Br, -I

Галогенпроизводные

Алкоксильная - OR

Простые эфиры

Алкилтиольная -SR

Тиоэфиры

Нитросоединения

Алкосикарбонильная

Сложные эфиры

Амино -NH 2

RNH 2 ,R 1 NHR 2, R 1 R 2 R 3 N

Карбоксамидная

2.2 Принципы химической номенклатуры – систематическая номенклатура июпак. Заместительная и радикально-функциональная номенклатура

Номенклатура – это система правил, позволяющая дать однозначное название соединению. В основе заместительной номенклатуры лежит выбор родоначальной структуры. Название строится как сложное слово, состоящее из корня (название родоначальной структуры), суффиксов, отражающих степень ненасыщенности, приставок и окончаний, указывающих характер, число и положение заместителей.

Родоначальная структура (родовой гидрид) – это неразветвленное ациклическое или циклическое соединение, в структуре которого к атомам углерода или других элементов присоединены только атомы водорода.

Заместитель – это функциональная (характеристическая) группа или углеводородный радикал, связанный с родоначальной структурой.

Характеристическая группа – это функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Главная группа – характеристическая группа, вводимая при формировании названий в виде окончания в конце названия при образовании названий с помощью функциональных групп.

Заместители, связанные с родоначальной структурой, делятся на два типа. Заместители 1-го типа - углеводородные радикалы и неуглеводородные характеристические группы, указываемые в названии только в приставках.

Заместители 2-го типа - характеристические группы, указываемые в названии в зависимости от старшинства либо в приставке, либо в окончании. В приведенной ниже таблице старшинство заместителей убывает сверху вниз.

Функциональная группа

Окончание

Карбоновая кислота

карбокси

Карбоновая кислота

овая кислота

Сульфоновые кислоты

сульфокислота

карбонитрил

Альдегиды

карбальдегид

Гидрокси

Меркапто

*- Атом углерода функциональной группы входит в состав родоначальной структуры.

Составление названия органического соединения производится в определенной последовательности.

    Определяют главную характеристическую группу, если она присутствует. Главная группа вводится в виде окончания в название соединения.

    Определяют родоначальную структуру соединения. За родоначальную структуру принимают, как правило, цикл в карбоциклических и гетероциклических соединениях или главную углеродную цепь в ациклических соединениях. Главную углеродную цепь выбирают с учетом следующих критериев: 1) максимальное число характеристических групп 2-го типа, обозначаемых как префиксами, так и суффиксами; 2) максимальное число кратных связей; 3) максимальная длина цепи; 4) максимальное число характеристических групп 1-го типа, обозначаемых только префиксами. Каждый последующий критерий используют, если предыдущий критерий не приводит к однозначному выбору родоначальной структуры.

    Проводят нумерацию родоначальной структуры таким образом, чтобы наименьший номер получила старшая характеристическая группа. При наличии нескольких одинаковых старших функциональных групп родоначальную структуру нумеруют таким образом, чтобы заместители получили наименьшие номера.

    Называют родоначальную структуру, в названии которой старшая характеристическая группа отражается окончанием. Насыщенность или ненасыщенность родоначальной структуры отражается суффиксами –ан,-ен,-ин , которые указываются перед окончанием, которое дает старшая характеристическая группа.

    Дают названия заместителям, которые в названии соединения отражаются в виде префиксов и перечисляются в едином алфавитном порядке. Множительные префиксы в едином алфавитном порядке не учитываются. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают меньший номер атома углерода). Цифры ставят перед приставками и после суффиксов или окончания. Количество одинаковых заместителей отражают в названии с помощью множительных префиксов ди, три, тетра, пента и т.д.

Название соединения формируется по схеме:

Примеры названий по заместительной номенклатуре ИЮПАК:

Радикально-функциональная номенклатура имеет ограниченное использование. Главным образом она используется при названии простых моно- и бифункциональных соединений.

Если в молекуле содержится одна функциональная группа, то название соединения формируется из названий углеводородного радикала и характеристической группы:

В случае более сложных соединений выбирают родоначальную структуру, имеющую тривиальное название. Расположение заместителей, которые указываются в приставках, производится с помощью цифр, греческих букв или приставок орто-, мета-, пара-.

2.3 Конформации соединений с открытой цепью

Соединения, имеющие одинаковый качественный и количественный состав, одинаковое химическое строение, но отличающиеся расположением в пространстве атомов и групп атомов, называются стереоизомерами. Конформация – это пространственное расположение атомов в молекуле в результате вращения атомов или групп атомов вокруг одной или нескольких ординарных связей. Стереоизомеры, превращающиеся друг в друга в результате вращения вокруг ординарной связи, называются конформационными изомерами. Для их изображения на плоскости чаще всего используют стереохимические формулы или проекционные формулы Ньюмена.

В стереохимических формулах связи, лежащие в плоскости бумаги, изображают черточкой; связи, направленные к наблюдателю, обозначают жирным клином; связи, расположенные за плоскостью (уходящие от наблюдателя), обозначают заштрихованным клином. Стереохимические формулы метана и этана могут быть представлены следующим образом:

Для получения проекционных формул Ньюмена в молекуле выбирают связь С-С, дальний от наблюдателя атом углерода обозначается окружностью, ближайший к наблюдателю атом углерода и связь С-С – точкой. Три другие связи атомов углерода на плоскости отображаются под углом 120 друг относительно друга. Стереохимические формулы этана можно представить в виде проекционных формул Ньюмена следующим образом:

Вращение относительно ординарных связей в молекуле метана не приводит к изменению пространственного положения атомов в молекуле. Но в молекуле этана в результате вращения вокруг ординарной связи С-С изменяется расположение в пространстве атомов, т.е. возникают конформационные изомеры. За минимальный угол поворота (торсионный угол) принято считать угол 60. Для этана, таким образом, возникают две конформации, переходящие друг в друга при последовательных поворотах на 60. Эти конформации различаются по энергии. Конформация, в которой атомы (заместители) находятся в наиболее близком положении, так как связи заслоняют друг друга, называется заслоненной . Конформация, в которой атомы (заместители) максимально удалены друг от друга, называется заторможенной (анти -конформация). Для этана разница в энергиях конформаций невелика и равна 11,7 кДж/моль, что сопоставимо с энергией теплового движения молекул этана. Такая небольшая разница в энергиях конформационных изомеров этана не позволяет их выделить и идентифицировать при обычной температуре. Более высокой энергией обладает заслоненная конформация, что обусловлено возникновением торсионных напряжений (напряжения Питцера) - в заимодействий, вызванных отталкиванием противостоящих связей. В заторможенной конформации связи максимально удалены и взаимодействия между ними минимальны, что и обуславливает минимальную энергию конформации.

У бутана при повороте относительно связи между вторым и третьим атомами углерода возникает дополнительно скошенная конформация (гош -конформация). Кроме этого, заслоненные конформации бутана отличаются энергетически.

Заслоненная (исходная) конформация бутана характеризуется максимальной энергией, что обусловлено наличием торсионных и ван-дер-ваальсовых напряжений. Ван-дер-ваальсовы напряжения в этой конформации возникают из-за взаимного отталкивания объемных (в сравнении с атомом Н) метильных групп, оказавшихся сближенными. Такое взаимодействие увеличивает энергию конформации, делая ее энергетически невыгодной. При повороте на 60 возникает скошенная конформация, в которой нет торсионных напряжений (связи не заслоняют друг друга), а ван-дер-ваальсовы напряжения существенно уменьшаются за счет отдаления метильных групп друг от друга, поэтому энергия гош-конформации меньше на 22 кДж/моль энергии заслоненной конформации. При очередном повороте на 60 возникает заслоненная конформация, в которой, однако, имеют место только торсионные напряжения. Между атомом Н и группой СН 3 не возникают ван-дер-ваальсовы напряжения вследствии незначительного размера атома Н. Энергия такой конформации меньше энергии исходной заслоненной конформации на 7,5 кДж/моль. Очередной поворот на 60 приводит к возникновению заторможенной конформации, в которой нет торсионных и ван-дер-ваальсовых напряжений, так как связи не заслоняют друг друга, а объемные метильные группы максимально удалены друг от друга. Энергия заторможенной конформации минимальна, меньше энергии исходной заслоненой конформации на 25,5 кДж/моль, а по сравнению с энергией скошенной конформации меньше на 3,5 кДж/моль. Последующие повороты приводят в возникновению заслоненной, скошенной и исходной заслоненной конформаций. При обычных условиях большинство молекул бутана находятся в виде смеси гош- и анти-конформеров.

Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)




Рекомендуем почитать

Наверх