Алюминиевый радиатор для светодиодов. Изготавливаем своими руками радиатор для светодиодов Видеоинструкция по изготовлению

Идеи для ремонта 07.03.2020
Идеи для ремонта

Светодиоды появились всего несколько лет назад. Но они уже успели закрепить за собой лидерские позиции на рынке осветительной продукции. Они могут применяться не только в системах освещения, но и в различных поделках или любительских схемах. Когда имеешь дело с led, нужно обязательно позаботиться о вариантах охлаждения. Одним из способов охлаждения светодиодов является установка радиатора.

Радиаторы для охлаждения светодиодов

Наша статья раскроет вам все тайны, как можно правильно и при этом своими руками собрать устройство для охлаждения.

Зачем необходим теплоотводник

Прежде чем приступить к самостоятельной сборке теплоотводника для светодиодов, необходимо знать особенности самого источника света.
Светодиоды представляют собой полупроводники, которые имеют две ножки (“+” и “-”) т.е. они обладают полярностью.

Светодиоды

Чтобы правильно изготовить для них радиатор, необходимо провести определенный расчет. В первую очередь этот расчет должен включать измерения напряжения, а также силу тока. Кроме этого необходимо помнить, что любое электроемкое устройство, включая светодиоды, отличает тенденцией к нагреванию. Поэтому здесь и нужна система охлаждения.
Проводя расчет, помните — лишь 1/3 от указанной мощности источника света будет преобразоваться в световой поток (например, 3-3,5 из 10w). Поэтому основная часть составит тепловые потери. Для того чтобы минимизировать теплопотери и используют радиаторы.

Обратите внимание! Перегревание светодиода приводит к уменьшению его срока эксплуатации. Поэтому использование радиатора позволяет еще и продлить «жизнь» источнику света.

Поэтому схемы светодиодов иметь комплекс охлаждения всех основных элементов.
Сегодня для охлаждения элементов электросхемы, в которую входят светодиоды, можно использовать три варианта теплоотведения:

  • через корпус прибора (не всегда можно реализовать);
  • через печатную плату. Охлаждение ведется через неосновные проводящие дорожки, по которым течет ток;
  • с помощью радиатора. Он подходит как к платам, так и к светодиодам.

Обратите внимание! В последней ситуации необходимо правильно провести расчет того, какой именно площади он должен быть.

Радиатор на светодиодах

Самым эффективным способом охлаждения светодиодов является использование радиатора, который легко можно соорудить самостоятельно. Главное помните, что на работу теплоотводчика влияет форма и количество ребер.

Особенности конструкции теплоотводчиков

Озадачившись собственноручно собрать радиатор, подходящий для светодиодов, многие задаются вполне закономерным вопросом «какой лучше?». Ведь сегодня существуют две группы теплоотводчиков, которые различаются по своим конструкционным особенностям:

  • игольчатые. Чаще применяются для системы охлаждения естественного типа. Такие модели применяются для мощных светодиодов;

Игольчатый радиатор

  • ребристые. Используются в системах принудительного охлаждения. Их выбирают в зависимости от геометрических параметров. При этом они могут применяться и для охлаждения мощных светодиодов.

Ребристый радиатор

Выбирая тип теплоотводчика необходимо помнить, что игольчатый пассивный аппарат превышает эффективность ребристой модели на 70%.
Радиатор любой конструкции (ребристой или игольчатой) может иметь различную форму:

  • квадратную;
  • круглую;
  • прямоугольную.

Вариант радиатора, подходящего для светодиодов, следует выбирать в зависимости от потребностей в системе охлаждения.

Особенности вычислений

Расчет схемы для создания своими руками радиатора всегда следует начинать с подбора элементной базы. Не забывайте, что номинал здесь должен отвечать не только потенциалу собираемого теплоотводчика, но и предотвращению создания дополнительных потерь. Иначе самодельный аппарат будет иметь низкую эффективность. И в первую очередь для этого необходимо провести расчет площади радиатора.
Что должен включать расчет такого параметра, как площадь:

  • модификация аппарата;
  • какая имеется площадь рассеивания;
  • показатели окружающего воздуха;
  • материал, из которого изготавливается теплоотводчик.

Такие нюансы необходимо учитывать тогда, когда проектируется новый радиатор, а не переделывается старый. Самым важным для самостоятельно сборки теплоотводника будет показатель максимально допустимого рассеивания мощности теплообменного элемента.
Чтобы рассчитать площадь радиатора существует два способа.
Первый метод расчета. Для того чтобы определить требуемую площадь, нужно использовать формулу F = а х S х (T1 – T2), где:

  • F — тепловой поток;
  • S – площадью поверхности теплоотводчика;
  • T1 - показатель температуры среды, которая отводит тепло;
  • T2 - температура, которую имеет нагретая поверхность;
  • а – коэффициент, отражающий теплоотдачу. Данный коэффициент для неполированных поверхностей условно принимается равным 6-8 Вт/(м2К).

Длина окружности

Используя этот способ расчета необходимо помнить, что пластина или ребро имеют две поверхности для отвода тепла. При этом расчет поверхности иглы проводится с помощью длины окружности (π х D), которую нужно умножить на показатель высоты.
Второй метод расчета. Здесь используется несколько упрощенная формула, выведенная экспериментальным путем. В данном случае используется формула S = x W, где:

  • S — площадь теплообменника;
  • M – незадействованная мощность светодиода;
  • W – подведенная мощность (Вт).

При этом если будет изготавливаться ребристый алюминиевый аппарат, можно использовать в расчетах данные, которые получили тайванские специалисты:

  • 60 Вт – от 7000 до 73000 см2;
  • 10 Вт – около 1000 см2;
  • 3 Вт – от 30 до 50 см2;
  • 1 Вт – от 10 до 15 см2.

Но в такой ситуации необходимо помнить, что приведенные выше данные подходят к климатическим условиям Тайваня. В нашем случае их стоит брать только лишь при проведении предварительных вычислений.

Материал для изготовления теплоотводчика

Срок службы светодиодов непосредственно зависит от того, какой материал задействован в полупроводнике, а также от качественности работы системы охлаждения.
При выборе материала для теплоотводчика, необходимо руководствоваться следующим:

  • материал должен иметь теплопроводность не менее 5-10 Вт;
  • уровень теплопроводности должен быть выше 10 Вт.

В связи с этим, для изготовления теплоотводчика стоит использовать такие материалы:

  • алюминий. Алюминиевый вариант на сегодняшний день для охлаждения светодиодов используют чаще всего. Но при этом алюминиевый теплоотводчик имеет существенный минус – состоит из ряда слоев. В результате такого строения алюминиевый аппарат провоцирует тепловые сопротивления. Их преодолеть можно только с помощью дополнительных теплопроводных материалов, в роли которых может выступать изоляционные пластины;

Обратите внимание! Алюминиевый радиатор, несмотря на свой недостаток, отлично справляется с отводом тепла. Здесь используется алюминиевая пластинка, которая обдувается вентилятором.

Алюминиевый радиатор

  • керамика. Керамические теплоотводчики имеют специальные трассы, по которым проводится ток. К этим же трассам припаиваются светодиоды. Такие изделия способны отводить в два раза больше тепла;
  • медь. Здесь имеется медная пластинка. Ее отличает более высокая теплопроводность, нежели у алюминия. Но медь уступает алюминию в технических характеристиках и весе. При этом медь — не податливый металл, а после обработки остается много обрезков;

Радиатор из меди

Как видим, самым оптимальным вариантом по цене и качеству будет изготовление своими руками радиатора для светодиодов из алюминия. Рассмотрим несколько способов того, как можно сделать теплоотводчик для светодиодов.

Каким образом изготавливаются теплоотводчики

Не все радиолюбители с охотой берутся за изготовление подобных устройств. Ведь оно будет выполнять ведущую роль. От того, насколько качественно будет сделан своими руками теплоотводчик, зависит срок эксплуатации осветительной установки, выполненной из светодиодов. Поэтому многие предпочитают не рисковать и покупать аппараты для системы охлаждения в специализированных магазинах.

Самодельный радиатор для диодов

Но бывают ситуации, когда нет возможности купить, но его можно изготовить из подручных средств, которые без проблем отыщутся в домашней лаборатории любого радиолюбителя. И здесь подходят два способа изготовления.

Первый способ самостоятельной сборки

Самой простой конструкцией для самодельного радиатора, конечно же, будет круг. Его можно вырезать следующим образом:

Разрезаный круг из алюминия

  • далее отгибаем немного сектора. В результате получается некое подобие вентилятора;
  • по осям необходимо отогнуть 4 усика. С их помощью устройство будет крепиться к корпусу лампы;
  • светодиоды на таком радиаторе можно закрепить при помощи термопасты.

Готовый радиатор для диодов круглой формы

Как видим, это достаточно простой способ изготовления.

Второй способ самостоятельной сборки

Охлаждающий аппарат, который будет подключаться к светодиодам, можно самостоятельно сделать их куска трубы, которая имеет прямоугольное сечение, а также из алюминиевого профиля. Здесь вам понадобятся:

  • пресс-шайба с диаметром 16 мм;
  • труба 30х15х1,5;
  • термопаста КТП 8;
  • Ш-образный профиль 265;
  • термоклей;
  • саморезы.

Делаем радиатор следующим образом:

  • в трубе просверливаем три отверстия;

Вариант трубы для радиатора

  • далее сверлим профиль. С его помощью будет осуществляться крепление к лампе;
  • светодиоды крепим к трубе, которая будет выступать в качестве основания теплоотводчика, с помощью термоклея;
  • в местах соединения элементов радиатора наносим слой термопасты КТП 8;
  • осталось собрать конструкцию с помощью саморезов, оснащенных пресс шайбой.

Данный способ будет несколько сложнее в реализации, чем первый вариант.

Заключение

Зная, что собой представляет радиатор, подключаемый к светодиодам, его вполне можно изготовить своими руками из подручных средств. Его правильная сборка поможет вам не только эффективно охлаждать осветительную установку, но и избежать ситуации снижения сроков эксплуатации светодиодов.

Светодиоды считаются одним из наиболее эффективных источников света, их световой поток доходит до фантастических значений, порядка 100 Лм/Вт. Люминесцентные лампы выдают в два раза меньше, а именно 50-70 Лм/Вт. Однако для долгой работы светодиода нужно выдерживать их тепловые режимы. Для этого применяются фирменные или самодельные радиаторы для светодиодов.

Зачем диодам нужно охлаждение?

Несмотря на высокие показатели светоотдачи светодиоды излучают света примерно на треть потребляемой мощности, а остальное выделяется в тепло. Если диод перегревается структура его кристалла нарушается, начинает деградировать, световой поток снижается, а степень нагрева лавинообразно увеличивается.

Причины перегрева светодиодов:

  • Слишком большой ток;
  • плохая стабилизация питающего напряжения;
  • плохое охлаждение.

Первые две причины решаются применением качественного источника питания для светодиодов. Такие источники часто называют . Их особенность заключается не в стабилизации напряжения, а именно в стабилизации выходного тока.

Дело в том, что при перегреве сопротивление светодиода снижается и ток, протекающий через него, возрастает. Если в качестве блока питания использовать стабилизатор напряжения – процесс получится лавинообразным: больше нагрев – больше ток, а больший ток – это больший нагрев и так по кругу.

Стабилизируя ток, вы отчасти стабилизируете и температуру кристалла. Третья причина – это плохое охлаждение для светодиодов. Рассмотрим этот вопрос подробнее.

Решаем проблему охлаждения

Маломощные светодиоды, например: 3528, 5050 и им подобные отдают тепло за счёт своих контактов, да и мощность у таких экземпляров гораздо меньше. Когда мощность прибора возрастает, появляется вопрос отвода лишнего тепла. Для этого применяют системы пассивного или активного охлаждения.

Пассивное охлаждение – это обычный радиатор, выполненный из меди или алюминия. О преимуществах материалов для охлаждения ходят споры. Достоинством такого типа охлаждение является – отсутствие шума и практически полное отсутствие необходимости его обслуживания.


Установка LED с пассивным охлаждением в точечный светильник

Активная система охлаждения – это способ охлаждения с применением внешней силы для улучшения отвода тепла. В качестве простейшей системы можно рассмотреть связку радиатор + кулер. Преимуществом является то, что такая система может быть значительно компактнее чем пассивная, до 10 раз. Недостатком — шум от кулера и необходимость его смазки.

Как подобрать радиатор?

Расчет радиатора для светодиода процесс не совсем простой, тем более для начинающего. Для его выполнения нужно знать тепловое сопротивление кристалла, а также перехода кристалл-подложка, подложка-радиатор, радиатор-воздух. Чтобы упростить решение многие пользуются соотношением 20-30 см 2 /Вт.

Это значит, что на каждый ватт LED света нужно использовать радиатор площадью порядка 30 см 2 .

Естественно, такое решение не является уникальным. Если ваша осветительная конструкция будет использоваться в подвальном прохладном помещении можно взять меньшую площадь, но при этом убедитесь, что температура светодиода в пределах нормы.

Предыдущие поколения LED комфортно чувствовали себя при температуре кристалла 50-70 градусов, новые светодиоды могут переноситьтемпературу до 100 градусов. Проще всего определить – прикоснуться рукой, если рука едва терпит – всё в порядке, а если кристалл может вас обжечь – принимайте решение для улучшения условий его работы.

Считаем площадь

Допустим мы имеем светильник мощностью 3Вт. Площадь радиатора для светодиода 3Вт, согласно описанному выше правилу будет равна 70-100см 2 . С первого взгляда может показаться большой.

Но рассмотрим расчет площади радиатора для светодиода. Для плоского пластинчатого радиатора площадь считается:

a * b * 2 = S

Где a , b – длины сторон пластины, S – полная площадь радиатора.

Откуда взялся коэффициент 2? Дело в том, что у такого радиатора две стороны и они равносильно отдают тепло окружающей среде, поэтому полная полезная площадь радиатора равна площади каждой из его сторон. Т.е. в нашем случае нужна пластина с размерами сторон 5*10см.

Для ребристого радиатора полная площадь равна – площади основания и площадям каждого из рёбер.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см 2 . Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см 2 . Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Выводы

Как вы могли убедится радиатор для светодиода можно найти как в магазине, так и порывшись в своих старых приборах, или просто в залежах всяких мелочей. Не обязательно использовать специальное охлаждение.

Площадь радиатора зависит от ряда условий, таких как влажность, температура окружающего воздуха и материал радиатора, но при бытовом решении ими пренебрегают.

Всегда уделяйте особое внимание проверке тепловых режимов ваших устройств. Таким образом вы обеспечите их надёжность и долговечность. Можно определять температуру рукой, но лучше приобретите мультиметр с возможностью её измерения.

Есть примерные данные Тайваньских специалистов для алюминиевых ребристых радиаторов:

  • 1Вт 10-15кв/см
  • 3Вт 30-50кв/см
  • 6Вт 150-250кв/см
  • 15Вт 900-1000кв/см
  • 24Вт 2000-2200кв/см
  • 60Вт 7000-73000кв/см

Эти данные для пассивного охлаждения .

Но эти данные были высчитаны для их климатических условий и все же они примерны т.к. значения не точны, есть разбег в площади.

Для расчета нужно знать следующие параметры:

1. Нужно понимать какой тип радиатора вы собралисьиспользовать:

пластинчатый, штыревой, ребристый

  • Пластинчатый
  • Штыревой (игольчатый)

  • Ребристый


2. Также нужно учитывать материал, из которого состоит радиатор. Чаще всего это медь или алюминий, но в последнее время появились и гибриды.


У гибридов идет встроенная медная пластина, которая соприкасается с рабочим элементом(элементом который требует охлаждения, в данном случае светодиод), далее алюминий.

3. Радиатор рассчитывается не по площади поверхности, а по полезной площади рассеивания.

4. Следующим фактором является, каким способом происходит теплоотвод от рабочего элемента на радиатор, т.е. применена термопаста или термоскотч, или же просто припаян.

5. Полезным будет знать сопротивление кристалл – корпус светодиода

6. Будет ли дополнительное охлаждение радиатора, и какое оно будет:

  • С помощью кулера (небольшого вентилятора):



  • Водяное охлаждение:



Конечно водяное охлаждение будет более эффективно, нежели просто кулером, но и охлаждение им в зависимости от мощности позволит вам снизить площадь радиатора в 3-5 раз. А с водяным могут возникнуть другие проблемы, как не герметичность системы например.

7. Так же необходимо учитывать и подводимую мощность, т.е. если светодиод будет работать на максимуме своих возможностей, то и в охлаждении он будет нуждаться сильнее, избыточная мощность вовсе будет переходить в тепло, если же в нагрузку снизить, допустим, в половину, то и перегрев будет намного ниже.

Так же следует учитывать место расположения устройства в помещении или на улице оно будет эксплуатироваться.

Так же в интернете есть формула, полученная экспериментальным путем, возможна будет полезна:

S охладителя = (22-(M х 1.5)) х W
S – площадь радиатора (охладителя)
W – подведенная мощность в ваттах
M – оставшаяся не задействованная мощность светодиода

При полученной площади не требуется дополнительного устройства охлаждающего радиатор, охлаждение происходит естественным путем и даст хороший теплоотвод в любых условиях.
Формула применима для алюминиевого радиатора. Для медного же площадь будет снижена почти в 2 раза.

Теплопроводность в Вт / м * °C различных материалов

серебро - 407

золото - 308

алюминий - 209

латунь - 111

платина - 70

серый чугун - 50

бронза - 47-58

Известно, что продолжительность службы светодиодов напрямую зависит от качества материала, используемого в полупроводнике, а также соотношения тока устройства к количеству выделяемого тепла. Отдача света постепенно понижается, а после того, как она будет составлять половину от изначального значения, срок службы светодиода начнет сокращаться. Продолжительность работы устройств может составлять до 100 000 часов, но только при условии, что на него не воздействуют высокие температуры.

Для охлаждения приборов, выделяющих тепло, в радиоэлектронике применяют такое устройство, как радиатор для светодиодов. Отвод тепла от агрегатов в атмосферу достигается двумя методами.

Первый способ охлаждения светодиодов

Этот метод основан на излучении тепловых волн в атмосферу, или тепловой конвекции. Способ относится к разряду пассивного охлаждения. Часть энергии поступает в атмосферу лучистым инфракрасным потоком, а часть уходит посредством циркуляции нагретого воздуха от радиатора.

Среди техники для светодиодов пассивная охлаждающая схема получила наибольшее распространение. Она не обладает вращающимися механизмами и не требует периодического обслуживания.

К минусам этой системы можно отнести необходимость установки крупного теплоотвода. Вес его достаточно большой, да и цена на него высокая.

Второй метод

Он получил название турбулентной конвекции. Этот способ является активным. В этой системе применимы вентиляторы или же другие механические приборы, которые могут создавать воздушные потоки.

Активный охлаждающий метод имеет более высокий уровень производительности, чем пассивный способ. Но неблагоприятные погодные условия, наличие большого количества пыли, в особенности в открытом пространстве, не позволяют инсталлировать подобные схемы повсеместно.

Изготовление радиаторов

При выборе материала следует руководствоваться следующими правилами:

  • Показатель теплопроводности должен быть не меньше 5-10 Вт. Материалы с более низким показателем не могут передать все тепло, которое принимает воздух.
  • Уровень теплопроводности выше 10 Вт с технической точки зрения будет избыточным, что повлечет за собой ненужные денежные затраты без повышения эффективности устройства.

Методы крепления светодиодов к радиатору

Светодиоды прикрепляются к устройству при помощи двух методов:

  • механического;
  • приклеивания.

Клеят светодиод термическим клеем. С этой целью на поверхность из металла наносится немного клея, затем на нее сажают светодиод. Для получения хорошего соединения светодиод придавливается грузом до полного высыхания клеящего вещества. Но большинство мастеров предпочитают использовать механический способ.

В настоящее время производятся специальные панели, посредством которых можно в кратчайшие сроки произвести монтаж диода. Некоторые модели предусматривают дополнительные зажимы для вторичной оптики. Монтаж весьма прост. На радиатор устанавливается светодиод, затем на него - панель, которую прикрепляют к основанию при помощи саморезов.

Заключение

Радиатор охлаждения для светодиодов высокого качества стал залогом долговечности устройства. Поэтому, подбирая прибор, следует быть предельно внимательным. Лучше прибегать к использованию заводских теплообменников. Они имеются в магазинах радиотоваров. Стоимость устройств высока, зато и монтаж светодиода на них проходит легко, а защита отличается качеством и надежностью.



Рекомендуем почитать

Наверх