Как отнять дробь от дроби с разными. Действия с дробями

Строительные материалы 26.09.2019
Строительные материалы

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 - 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Смешанные дроби также, как и простые дроби можно вычитать. Чтобы отнять смешанные числа дробей нужно знать несколько правил вычитания. Изучим эти правила на примерах.

    Вычитание смешанных дробей с одинаковыми знаменателями.

    Рассмотрим пример с условием, что уменьшаемое целое и дробная часть больше соответственно вычитаемого целой и дробной части. При таких условиях вычитание происходит отдельно. Целую часть вычитаем из целой части, а дробную часть из дробной .

    Рассмотрим пример:

    Выполните вычитание смешанных дробей \(5\frac{3}{7}\) и \(1\frac{1}{7}\).

    \(5\frac{3}{7}-1\frac{1}{7} = (5-1) + (\frac{3}{7}-\frac{1}{7}) = 4\frac{2}{7}\)

    Правильность вычитания проверяется сложением. Сделаем проверку вычитания:

    \(4\frac{2}{7}+1\frac{1}{7} = (4 + 1) + (\frac{2}{7} + \frac{1}{7}) = 5\frac{3}{7}\)

    Рассмотрим пример с условием, когда дробная часть уменьшаемого меньше соответственно дробной части вычитаемого. В таком случае мы занимаем единицу у целого в уменьшаемом.

    Рассмотрим пример:

    Выполните вычитание смешанных дробей \(6\frac{1}{4}\) и \(3\frac{3}{4}\).

    У уменьшаемого \(6\frac{1}{4}\) дробная часть меньше чем у дробной части вычитаемого \(3\frac{3}{4}\). То есть \(\frac{1}{4} < \frac{1}{3}\), поэтому сразу отнять мы не сможем. Займем у целой части у 6 единицу, а потом выполним вычитание. Единицу мы запишем как \(\frac{4}{4} = 1\)

    \(\begin{align}&6\frac{1}{4}-3\frac{3}{4} = (6 + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {1} + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {\frac{4}{4}} + \frac{1}{4})-3\frac{3}{4} = (5 + \frac{5}{4})-3\frac{3}{4} = \\\\ &= 5\frac{5}{4}-3\frac{3}{4} = 2\frac{2}{4} = 2\frac{1}{4}\\\\ \end{align}\)

    Следующий пример:

    \(7\frac{8}{19}-3 = 4\frac{8}{19}\)

    Вычитание смешанного дроби из целого числа.

    Пример: \(3-1\frac{2}{5}\)

    Уменьшаемое 3 не имеет дробной части, поэтому сразу отнять мы не сможем. Займем у целой части у 3 единицу, а потом выполним вычитание. Единицу мы запишем как \(3 = 2 + 1 = 2 + \frac{5}{5} = 2\frac{5}{5}\)

    \(3-1\frac{2}{5}= (2 + \color{red} {1})-1\frac{2}{5} = (2 + \color{red} {\frac{5}{5}})-1\frac{2}{5} = 2\frac{5}{5}-1\frac{2}{5} = 1\frac{3}{5}\)

    Вычитание смешанных дробей с разными знаменателями.

    Рассмотрим пример с условием, если дробные части уменьшаемого и вычитаемого с разными знаменателями. Нужно привести к общему знаменателю, а потом выполнить вычитание .

    Выполните вычитание двух смешанных дробей с разными знаменателями \(2\frac{2}{3}\) и \(1\frac{1}{4}\).

    Общим знаменателем будет число 12.

    \(2\frac{2}{3}-1\frac{1}{4} = 2\frac{2 \times \color{red} {4}}{3 \times \color{red} {4}}-1\frac{1 \times \color{red} {3}}{4 \times \color{red} {3}} = 2\frac{8}{12}-1\frac{3}{12} = 1\frac{5}{12}\)

    Вопросы по теме:
    Как вычитать смешанные дроби? Как решать смешанные дроби?
    Ответ: нужно определиться к какому типу относиться выражение и по типу выражения применять алгоритм решения. Из целой части вычитаем целое, у дробной части вычитаем дробную часть.

    Как из целого числа вычесть дробь? Как от целого числа отнять дробь?
    Ответ: у целого числа нужно занять единицу и записать эту единицу в виде дроби

    \(4 = 3 + 1 = 3 + \frac{7}{7} = 3\frac{7}{7}\),

    а потом целое отнять от целого, дробную часть отнять от дробной части. Пример:

    \(4-2\frac{3}{7} = (3 + \color{red} {1})-2\frac{3}{7} = (3 + \color{red} {\frac{7}{7}})-2\frac{3}{7} = 3\frac{7}{7}-2\frac{3}{7} = 1\frac{4}{7}\)

    Пример №1:
    Выполните вычитание правильной дроби из единицы: а) \(1-\frac{8}{33}\) б) \(1-\frac{6}{7}\)

    Решение:
    а) Представим единицу как дробь со знаменателем 33. Получим \(1 = \frac{33}{33}\)

    \(1-\frac{8}{33} = \frac{33}{33}-\frac{8}{33} = \frac{25}{33}\)

    б) Представим единицу как дробь со знаменателем 7. Получим \(1 = \frac{7}{7}\)

    \(1-\frac{6}{7} = \frac{7}{7}-\frac{6}{7} = \frac{7-6}{7} = \frac{1}{7}\)

    Пример №2:
    Выполните вычитание смешанной дроби из целого числа: а) \(21-10\frac{4}{5}\) б) \(2-1\frac{1}{3}\)

    Решение:
    а) Займем у целого числа 21 единицу и распишем так \(21 = 20 + 1 = 20 + \frac{5}{5} = 20\frac{5}{5}\)

    \(21-10\frac{4}{5} = (20 + 1)-10\frac{4}{5} = (20 + \frac{5}{5})-10\frac{4}{5} = 20\frac{5}{5}-10\frac{4}{5} = 10\frac{1}{5}\\\\\)

    б) Займем у целого числа 2 единицу и распишем так \(2 = 1 + 1 = 1 + \frac{3}{3} = 1\frac{3}{3}\)

    \(2-1\frac{1}{3} = (1 + 1)-1\frac{1}{3} = (1 + \frac{3}{3})-1\frac{1}{3} = 1\frac{3}{3}-1\frac{1}{3} = \frac{2}{3}\\\\\)

    Пример №3:
    Выполните вычитание целого числа из смешанной дроби: а) \(15\frac{6}{17}-4\) б) \(23\frac{1}{2}-12\)

    а) \(15\frac{6}{17}-4 = 11\frac{6}{17}\)

    б) \(23\frac{1}{2}-12 = 11\frac{1}{2}\)

    Пример № 4:
    Выполните вычитание правильной дроби из смешанной дроби: а) \(1\frac{4}{5}-\frac{4}{5}\)

    \(1\frac{4}{5}-\frac{4}{5} = 1\\\\\)

    Пример №5:
    Вычислите \(5\frac{5}{16}-3\frac{3}{8}\)

    \(\begin{align}&5\frac{5}{16}-3\frac{3}{8} = 5\frac{5}{16}-3\frac{3 \times \color{red} {2}}{8 \times \color{red} {2}} = 5\frac{5}{16}-3\frac{6}{16} = (5 + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {1} + \frac{5}{16})-3\frac{6}{16} = \\\\ &= (4 + \color{red} {\frac{16}{16}} + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {\frac{21}{16}})-3\frac{3}{8} = 4\frac{21}{16}-3\frac{6}{16} = 1\frac{15}{16}\\\\ \end{align}\)

    На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями - одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.

    Рассмотрим простейший пример для обыкновенных дробей.

    Пример 1. Сложить дроби: .

    Решение:

    Вспомним правило сложения дробей. Для начала дроби необходимо привести к общему знаменателю. В роли общего знаменателя для обыкновенных дробей выступает наименьшее общее кратное (НОК) исходных знаменателей.

    Определение

    Наименьшее натуральное число, которое делится одновременно на числа и .

    Для нахождения НОК необходимо разложить знаменатели на простые множители, а затем выбрать все простые множители, которые входят в разложение обоих знаменателей.

    ; . Тогда в НОК чисел должны входить две двойки и две тройки: .

    После нахождения общего знаменателя, необходимо для каждой из дробей найти дополнительный множитель (фактически, поделить общий знаменатель на знаменатель соответствующей дроби).

    Затем каждая дробь умножается на полученный дополнительный множитель. Получаются дроби с одинаковыми знаменателями, складывать и вычитать которые мы научились на прошлых уроках.

    Получаем: .

    Ответ: .

    Рассмотрим теперь сложение алгебраических дробей с разными знаменателями. Сначала рассмотрим дроби, знаменатели которых являются числами.

    Пример 2. Сложить дроби: .

    Решение:

    Алгоритм решения абсолютно аналогичен предыдущему примеру. Легко подобрать общий знаменатель данных дробей: и дополнительные множители для каждой из них.

    .

    Ответ: .

    Итак, сформулируем алгоритм сложения и вычитания алгебраических дробей с разными знаменателями :

    1. Найти наименьший общий знаменатель дробей.

    2. Найти дополнительные множители для каждой из дробей (поделив общий знаменатель на знаменатель данной дроби).

    3. Домножить числители на соответствующие дополнительные множители.

    4. Сложить или вычесть дроби, пользуясь правилами сложения и вычитания дробей с одинаковыми знаменателями.

    Рассмотрим теперь пример с дробями, в знаменателе которых присутствуют буквенные выражения.

    Пример 3. Сложить дроби: .

    Решение:

    Поскольку буквенные выражения в обоих знаменателях одинаковы, то следует найти общий знаменатель для чисел . Итоговый общий знаменатель будет иметь вид: . Таким образом, решение данного примера имеет вид:.

    Ответ: .

    Пример 4. Вычесть дроби: .

    Решение:

    Если «схитрить» при подборе общего знаменателя не удаётся (нельзя разложить на множители или воспользоваться формулами сокращённого умножения), то в качестве общего знаменателя приходится брать произведение знаменателей обеих дробей.

    Ответ: .

    Вообще, при решении подобных примеров, наиболее сложным заданием является нахождение общего знаменателя.

    Рассмотрим более сложный пример.

    Пример 5. Упростить: .

    Решение:

    При нахождении общего знаменателя необходимо прежде всего попытаться разложить знаменатели исходных дробей на множители (чтобы упростить общий знаменатель).

    В данном конкретном случае:

    Тогда легко определить общий знаменатель: .

    Определяем дополнительные множители и решаем данный пример:

    Ответ: .

    Теперь закрепим правила сложения и вычитания дробей с разными знаменателями.

    Пример 6. Упростить: .

    Решение:

    Ответ: .

    Пример 7. Упростить: .

    Решение:

    .

    Ответ: .

    Рассмотрим теперь пример, в котором складываются не две, а три дроби (ведь правила сложения и вычитания для большего количества дробей остаются такими же).

    Пример 8. Упростить: .

    Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

    Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

    Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

    Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

    На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

    Как найти значение выражения где знаменатели разные

    В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
    3 2/7+6 1/3

    Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

    Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
    6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
    3 6/21+6 7/21=9 15/21
    Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
    2 1/3+3 2/3
    В данном случае складываем целые части и дробные, получаем:
    5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

    С нахождением суммы всё понятно, разберём вычитание:

    Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

    • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

    Попробуем самостоятельно вычислить значение выражений:

    Разберём подробнее пример под буквой «м»:

    4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
    3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
    3 16/11-2 8/11=1 целая 8/11

    • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

    19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

    Подведём итог:

    Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

    Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.



    Рекомендуем почитать

    Наверх