Переносной ветрогенератор своими руками. Вертикальный ветрогенератор своими руками. Особенности сборки вертикального ветрогенератора из автомобильного генератора своими руками

Детям 03.11.2019
Детям

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.

Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов.

Нередко возникают ситуации, когда электроэнергия в ближайшей линии передач становится недоступной или неоправданно дорогой, и в таких случаях может выручить только самодельный ветряк. Давайте рассмотрим варианты автономного снабжения загородного дома электричеством.

Ветряные генераторы – какая модель лучше?

Очень часто хочется сэкономить на электроэнергии или получить ее там, где еще не проходят вышки ЛЭП. Также возможен вариант, когда просто нет возможности присоединения к этой вышке по причине отсутствия свободной мощности. В любом из перечисленных случаев возникает необходимость найти доступный источник электроэнергии, причем желательно возобновляемый, то есть без применения горючего. Поэтому забудем на время про существование бензиновых и дизельных генераторов и попробуем использовать силу ветра для получения электричества.

Ветряки существуют довольно давно, еще пару столетий назад активно использовались ветряные мельницы. Да, во время штиля от такого приспособления мало толку, а во время бури может отказать даже самый надежный механизм (в лучшем случае). Но при всей своей ненадежности ветровой генератор для дома своими руками изготовить проще всего, он считается наиболее эффективным, особенно если нет доступа к реке с быстрым течением для установки колеса. И следует помнить, что башня ветряка не должна мешать соседям ни шумом, ни вибрацией, ни даже отбрасываемой тенью, согласно правилам строительства жилого дома на участке.

Основных видов ветряков существует только 2: с вертикальной и горизонтальной осью вращения . Мельницы, когда-то используемые повсеместно, относились к механизмам, лопасти которых насаживались на горизонтально ориентированную ось. Также и большинство ветряков сегодня изготавливаются именно по этому принципу, поскольку такой вариант обеспечивает наибольший КПД. Однако ветряные генераторы с вертикальной осью для дома, сделанные своими руками, работают при самом слабом ветре, который не сдвинет лопасти пропеллерных моделей. Для них достаточно легких порывов от 1–2 метров в секунду. Что касается изготовления – гораздо проще сделать вертикальный ветряк, который принимает ветер с любой стороны.

Различают генераторы и по типу лопастей, которые имеются у обоих указанных выше видов. По большей части основным фактором деления по типам является конструкция: жесткая или парусная. Уже в зависимости от того, какой вариант предпочтительнее для конкретной модели, выбирается материал для изготовления лопастей улавливателя ветровых потоков. Это может быть фанера, жесть или тонкая листовая сталь, пластик, композит – для легкой жесткой конструкции, а для парусной подойдет любой гибкий, но прочный материал, включая шелк, баннерную ткань или даже тонкий брезент.

Различия генераторов по форме лопастей – сравнение эффективности

Самый простой вариант горизонтального типа – парусная конструкция, то есть просто расположение плоскостей пропеллера под небольшим углом к плоскости вращения. Жесткие лопасти потребуют точного расчета изгиба их поверхностей, либо добиваться максимальной производительности нужно будет опытным путем. Недостаточное искривление "крыла" даст в итоге понижение КПД из-за плохого захвата воздушного потока, а слишком сильное само будет создавать сопротивление вращению из-за трения о воздух.

Что касается генераторов с вертикальной осью, их улавливатели ветра могут иметь самые разные формы, и разработки новых контуров и изгибов продолжаются постоянно. Самый простой вариант – с лопастями в форме желобов, так называемая конструкция Савониуса. Их количество обычно делают четным – 2 или 4. Хотя бывает и больше, когда изготавливают своими руками самодельные многолопастные вертикальные ветрогенераторы на 30 кВт, с дополнительными статичными экранами на внешнем кольце. Эти экраны направляют и концентрируют ветер на определенные участки расположенного внутри кольца ротора, где установлены непосредственно лопасти. Их, в зависимости от диаметра диска основания, может начитываться от 8 до 16 штук.

Существуют еще ортогональные пропеллеры, которые расположены на вертикально установленных осях и вращаются в горизонтальной плоскости, но их основной недостаток в чрезвычайно низком КПД. Также подобные генераторы не работают при слабых порывах ветра, нужна скорость не менее 4 метров в секунду. И реже всего используются модели ветряков Дорье, в том числе геликоидный, с винтообразным загибом лопастей, дугообразными улавливателями ветра и конструкцией типа "Н". Они надежны и эффективны, но их сложно делать в домашних условиях.

Плюсы и минусы различных типов – разбираем и оцениваем

Как уже было сказано, производительность намного выше у моделей с горизонтальной осью вращения. Однако они нуждаются в сильном ветре, такой обычно бывает на высоте более 10–15 метров, и именно такой длины устанавливают мачту, которую венчает поворотная гондола с лопастями. Еще одним положительным качеством можно считать отсутствие изгибающей нагрузки на вал, которая имеет место у ветряков с вертикальной осью. К минусам же можно отнести тот факт, что у поворотных пропеллерных моделей 2 вала, а значит больше изнашивающихся узлов и выше вероятность поломки.

Что касается вертикальных систем, их достоинства и недостатки зависят от модели. К примеру, ветряки Савониуса наиболее простые и могут быть сделаны для дома своими руками, как из консервной банки, так и из металлической либо пластиковой бочки. Заводятся они при наличии 4 лопастей от самого легкого дуновения ветра, особенно если установлены качественные детали, тогда будет происходить самораскручивание за счет инерции даже при порывистом ветре. Но если лопасти только 2 или 3, самостоятельное вращение невозможно, поэтому ставят 2 таких модуля один на другой, располагая улавливатели ветра каждого под углом 90 градусов по отношению к другому. Парусность у этого типа большая, а потому очень высоко боковое давление на ось при сильном шторме.

У ортогональных ветряков, помимо их малой мощности, имеется еще ряд недостатков. Во-первых, это довольно сильная вибрация из-за неравномерного давления на разные участки лопасти крыловидной формы. Как следствие, быстро портится подшипник, установленный на вертикальном вале. Кроме того, подобные генераторы издают при вращении довольно сильный и неприятный шум, и потому могут стать причиной недовольства соседей на ближайших участках. Геликоидные, если их приобретать готовые, заводской комплектации, обходятся очень дорого, так же, как и многолопастные конструкции, у которых очень большое количество деталей.

Любой ветрогенератор для повышения эффективности может быть установлен в поворачивающейся трубе.

Принцип работы ветряков – как устроена система?

Независимо от типа ветряка, сам по себе он энергию выработать не может, ему нужен генератор, вращение вала которого будет обеспечиваться лопастями. Если у вас конструкция с горизонтальной осью вращения, для передачи движения на вал понадобится редуктор. Далее подключается контроллер, который преобразует получаемое на катушках генератора электричество в постоянный ток, поступающий затем в аккумуляторы. Далее можно подключить светодиодную лампочку, но если вы хотите зарядить какое-нибудь устройство или подключить ноутбук, понадобится еще и инвертор, который преобразует накопленный батареей заряд в переменный ток.

Следует учитывать, что каждое изменение тока с переменного на постоянный, и наоборот, уменьшает итоговое количество энергии на 10–15 %.

Установка с вертикальной осью вращения удобна тем, что у нее вал может быть довольно длинным, и это позволяет поместить генератор в нижней части мачты, то есть в зоне прямого доступа. Нередко в цепь устанавливают автоматический переключатель, в тех случаях, когда ветряк работает в комплексе с солнечными батареями или водяным колесом. Также в некоторых моделях ставят тормоз, который нужен на тот случай, если аккумулятор полностью заряжен. На лопастях ветряков с горизонтальной осью вращения могут быть предусмотрены шарниры, которые складывают улавливатели ветра при шторме. Очень мощный ветрогенератор на 5 киловатт, сделанный своими руками, иногда дополняется поворотным электромотором, который срабатывает от датчика направления потоков воздуха.

Изделие на неодимовых магнитах – краткая инструкция

Доверить сборку ротора и статора для ветряка лучше специалисту, но если вы решили сделать ветряк для частного дома с нуля своими руками, необходимо знать, как изготавливается генератор. Начать следует с основания, для которого лучше всего использовать ступицу автомобиля, поскольку на ней уже есть подшипники. На диск через равные промежутки наклеиваются неодимовые магниты, полюса которых, обращенные лицевой стороной к вам, должны чередоваться. Причем в однофазной модели число разнополюсных сторон должно совпадать. Что касается трехфазных генераторов, там рекомендуется соблюдать пропорции 2:3 или 3:4.

Далее следует заняться наматыванием катушек для статора. Эту задачу тоже лучше доверить специалисту или использовать специальные приспособления, которые помогут справиться с задачей более аккуратно, чем если все делать вручную. Для того чтобы успешно заряжать батарею на 12 Ватт, понадобится суммарное количество витков во всех катушках, равное 1000. В целом для расчета витков можно использовать наиболее простую формулу ω = 44 / (T * S) , где 44 – постоянный коэффициент, Т – индукция Тесла, а S – сечение провода в квадратных сантиметрах. Индукцию Тесла определяем по таблице для различных типов проводников:

Намотанные катушки (им лучше придавать прямоугольную или трапециевидную форму для удобства расположения по кругу) закрепляем клеем на неподвижном основании статора. При этом форма и размеры внутреннего пространства катушки должны соответствовать контурам магнита. То же касается и толщины. Все концы проводников выводим и соединяем так, чтобы получилось два общих пучка "+" и "–". Сердцевины катушек заливаем тем же клеем, что использовался для фиксации, можно им же изолировать полностью провода, уложенные на диск статора. Теперь, если магниты будут при вращении ротора совмещаться с катушками, разность потенциалов полюсов создаст условия для выработки электричества.

Изготовление ветряка на основе готового электромотора

Обычно домашние мастера стараются использовать автомобильные генераторы, однако подходят далеко не все, а только самовозбуждающиеся, например, такие, которые использовались в некоторых моделях тракторов. Большинство же требуют для появления тока наличия подключенного аккумулятора. Однако в качестве основы для ветряка можно использовать и мотор-колесо для самоката или скутера. Это позволит сделать малошумные вертикальные ветрогенераторы на 5 кВт, которые будут иметь очень высокий ресурс за счет простейшей конструкции с минимумом деталей.

Также можно использовать в качестве генератора практически любой электромотор от бытовых станков, главное, чтобы в основе отсутствовали щетки, как, например, в или электродрелях – такие генераторы вам не подойдут. Для маломощного варианта годится и кулер от компьютера, но только для зарядки небольших электронных устройств. Если вы хотите получить вертикальный ветрогенератор, изготовленный своими руками, хотя бы на 2 кВт, лучше взять за основу мотор от мощного вентилятора.

С каждым годом люди ведут поиски альтернативных источников. Самодельная электростанция из старого автомобильного генератора будет кстати в отдалённых участках, где нет подключения к общей сети. Она сможет свободно заряжать аккумуляторные батареи, а также обеспечит работу нескольких бытовых приборов и освещения. Куда использовать энергию, что будет вырабатываться решаете вы, а также собрать его своими руками или приобрести у производителей, которых на рынке предостаточно. В этой статье мы поможем вам разобраться со схемой сборки ветрогенератора своими руками из тех материалов которые всегда есть у любого хозяина.

Рассмотрим принцип работы ветро-электростанции. Под быстрым ветровым потоком активируется ротор и винты, после в движение приходит основной вал, вращающий редуктор, а потом происходит генерация. На выходе мы получаем электричество. Следовательно, чем выше скорость вращения механизма, тем больше производительности. Соответственно, при расположении конструкций учитывайте местность, рельеф, знать участки территорий, где большая скорость вихря.


Инструкция сборки из автомобильного генератора

Для этого вам потребуется заранее приготовить всё комплектующие. Самым важным элементом является генератор. Лучше всего брать тракторный или автобусный, он способен выработать намного больше энергии. Но если такой возможности нет, то вероятнее стоит обойтись и более слабыми агрегатами. Для сборки аппарата вам понадобится:
вольтметр
реле аккумуляторной зарядки
сталь для изготовления лопастей
12 вольтовый аккумулятор
коробка для проводов
4 болта с гайками и шайбами
хомуты для крепления

Сборка устройства для дома на 220в

Когда все потребное готово переходите к сборке. Каждый из вариантов может иметь дополнительные детали, но они чётко оговариваются непосредственно в руководстве.
Первым делом соберите ветряное колесо - главный элемент конструкции, ведь именно эта деталь будет преображать энергию ветра в механическую. Лучше всего, чтобы у него было 4 лопасти. Запомните, что чем меньше их количество, тем больше механической вибрации и тем сложней будет его сбалансировать. Делают их из листовой стали или железной бочки. Форму они должны носить не такую, как вы видели в старых мельницах, а напоминающие крыльчатый тип. У них аэродинамическое сопротивление намного ниже, а эффективность выше. После того как вы с помощью болгарки, вырежете ветряк с лопастями диаметром 1.2-1.8 метра, его вместе с ротором требуется прикрепить с осью генератора, просверлив отверстия и соединив болтами.


Сборка электрической схемы

Закрепляем провода и подключаем их непосредственно к аккумулятору и преобразователю напряжения. Требуется использовать все, что в школе на уроках физики вас учили мастерить при сборке электрической схемы. Перед началом разработки подумайте, какие кВт вам нужны. Важно отметить, что без последующей переделки и перемотки статора вовсе не пригодны, рабочие обороты составляют 1,2 тыс-6 тыс. об/м, а этого недостаточно для производства энергии. Именно по этой причине требуется избавится от катушки возбуждения. Чтобы поднять уровень напряжения, перемотайте статор тонким проводом. Как правило, в результате мощность будет при 10 м/с 150-300 ватт. После сборки ротор хорошо будет магнитить, будто к нему подключили питание.

Роторные самодельные ветрогенераторы очень надёжны в работе и экономично выгодны, единственным их несовершенством является страх сильных порывов ветра. Принцип работы имеет простой - вихрь через лопасти заставляет механизм крутиться. В процессе этих интенсивных вращений вырабатывается энергия, необходимого вам напряжения. Такая электростанция – это очень удачный способ обеспечить электричеством небольшой дом, конечно, чтобы выкачивать воду из скважины его мощности будет недостаточно, но посмотреть телевизор или включить свет во всех помещениях с его помощью возможно.

Из домашнего вентилятора

Сам вентилятор может быть в нерабочем состоянии, но из него требуется всего несколько деталей - это стойка и сам винт. Для конструкции понадобиться небольшой шаговый двигатель спаянный диодным мостиком для того, чтобы он выдавал постоянное напряжение, бутылочка от шампуня, пластиковая водопроводная трубка длиной примерно 50 см, заглушка для неё и крышка от пластикового ведра.



На станке делают втулку и фиксируют в разъёме от крыльев разобранного вентилятора. В эту втулку будет крепиться генератор. После закрепления, нужно заняться изготовлением корпуса. Срезают с помощью станка или в ручном режиме дно от бутылки шампуня. Во время отрезания, требуется также оставить отверстие на 10, чтобы в него вставить ось, выточенную из алюминиевого прута. Прикрепляют её с помощью болта и гайки к бутылочке. После того как была выполнена припайка всех проводов, в корпусе бутылочки проделывают ещё одно отверстие для вывода этих самых проводов. Протягиваем их и закрепляем в бутылочке сверху на генераторе. По форме они должны совпадать и корпус бутылки должен надёжно скрывать все его части.

Хвостовик для нашего устройства

Чтобы в будущем он улавливал потоки ветра с разных сторон, соберите хвостовик, использовав заранее подготовленную трубку. Хвостовая часть будет крепиться с помощью откручиваемой крышки от шампуня. В ней тоже делают отверстие и, предварительно надев на один конец трубки заглушку, протягивают её и закрепляют к основному корпусу бутылочки. С другой стороны, трубку пропиливают ножовкой и вырезают ножницами из крышки пластикового ведра крыло хвостовика, оно должно иметь круглую форму. Все что вам нужно, это попросту обрезать края ведра, которыми оно прикреплялось к основной ёмкости.


На заднюю панель подставки прикрепляем USB выход и складываем все полученные детали в одну. Крепить радио или подзаряжать телефон можно будет через этот вмонтированный USB порт. Конечно, сильной мощностью он от бытового вентилятора не обладает, но все же освещение одной лампочки может обеспечить.

Ветрогенератор своими руками из шагового двигателя

Устройство из шагового двигателя даже при небольшой скорости вращения вырабатывает около 3 Вт. Напряжение может подниматься выше 12 В, а это позволяет заряжать небольшой аккумулятор. В качестве генератора можно вставить шаговый двигатель от принтера. В таком режиме у шагового двигателя вырабатывается переменный ток, а его без труда преобразовать в постоянный, используя несколько диодных мостов и конденсаторы. Схему вы можете собрать собственноручно. Стабилизатор устанавливают за мостами, в следствии получим постоянное выходное напряжение. Чтобы контролировать зрительно напряжение, можно установить светодиод. С целью уменьшения потери 220 В, для его выпрямления, применяются диоды Шоттки.


Лопасти будут из трубы ПВХ. Заготовку рисуют на трубе, а затем вырезают отрезным диском. Размах винта должен составлять около 50 см, а ширина - 10 см. Нужно выточить втулку с фланцем под размер вала ШД. Она насаживается на вал двигателя и крепится с помощью винтов, непосредственно к фланцам будут крепиться пластиковые “винты”. Также проведите балансировку – от концов крыльев отрезаются кусочки пластика, угол наклона изменить посредством нагрева и изгиба. В само устройство вставляют кусок трубы, к которому его тоже прикрепляют болтами. Что касается электрической платы, то её лучше разместить внизу, а к ней вывести питание. С шагового двигателя выходят до 6 проводов, которые соответствуют двум катушкам. Для них потребуются токосъёмные кольца для передачи электроэнергии от подвижной части. Соединив все детали между собой переходим к тестированию конструкции, которая будет начинать обороты при 1 м/с.

Ветряк из мотор-колесо и магнитов

Не каждый знает, что ветрогенератор из мотор-колеса можно собрать своими руками за короткое время, главное заранее запастись нужными материалами. Для него лучше всего подходит ротор Савониуса, его можно приобрести готовый или же самостоятельно. Он состоит из двух полуцилиндрических лопастей и перекрытия, из которых и получаются оси вращения ротора. Материал для их изделия выбирайте самостоятельно: дерево, стеклоткань или пвх-трубу, что является самым простым и оптимальным вариантом. Изготовляем место соединения деталей, на котором нужно проделать отверстия для крепления в соответствии с количеством лопастей. Потребуется стальной поворотный механизм, чтобы устройство могло выдерживать любую погоду.

Из ферритовых магнитов

Ветрогенератор на магнитах будет сложно освоить малоопытным мастерам, но все же можно попробовать. Итак, должны быть четыре полюса, в каждом будет находиться по два ферритовых магнита. Покрывать их будут накладки из металла толщиной чуть меньше миллиметра для распределения более равномерного потока. Основных катушек должно быть 6 штук, перемотаны толстым проводом и должны находиться через каждый магнит, занимая пространство, соответствующее длине поля. Крепление схем обмотки может быть на ступице от болгарки, в середину которой установлен заранее выточенный болт.

Регулируется поток подачи энергии высотой закрепления статора над ротором, чем он выше, тем меньше залипаний, соответственно мощность понижается. Для ветряка нужно сварить опору-стойку, а на диске статора закрепить 4 больших лопасти, которые вы можете вырезать из старой металлической бочки или крышки от пластикового ведра. При средней скорости вращения выдаёт примерно до 20 ватт.

Конструкция ветряка на неодимовых магнитах

Если вы хотите узнать о создании, нужно сделать основой ступицу автомобиля с дисками тормоза, такой выбор вполне оправдан, ведь она мощная, надёжная и хорошо сбалансированная. После того как вы отчистите ступицу от краски и грязи, переходите к расстановке неодимовых магнитов. Их потребуется по 20 штук на диске, размер должен составлять 25х8 миллиметров.

Магниты нужно размещать, учитывая чередование полюсов, перед склейкой лучше создать бумажный шаблон либо прочертить линии, делящие диск на сектора, чтобы не перепутать полюса. Очень важно, чтобы они, стоящие друг напротив друга, были с разными полюсами, то есть притягивались. Клеят их супер-клеем. Поднимите бордюрчики по краям дисков, и в центре намотайте скотч или залепите пластилином для недопущения растекания. Чтобы изделие работало с максимальной отдачей, катушки статора следует рассчитать правильно. Увеличение количества полюсов приводит к росту частоты тока в катушках, благодаря этому, устройство даже при низкой частоте оборота даёт большую мощность. Намотка катушек осуществляется более толстыми проводами, с целью снижения сопротивления в них.

Когда основная часть готова, изготовляют лопасти, как в предыдущем случае и закрепляют их к мачте, что может быть изготовлена из обыкновенной пластиковой трубы с диаметром- 160 мм. В конце концов наш генератор, работающий на принципе магнитной левитации, с диаметром в полтора метра и шестью крыльями, в 8м/с, способен обеспечить до 300 Вт.

Цена разочарования или дорогой флюгер

Сегодня существует множество вариантов как сделать устройство для преобразования энергии ветра, каждый способ по-своему эффективен. Если вы ознакомлены с методикой изготовления оборудования вырабатывающего энергию, то будет неважно на базе чего его делать, главное, чтобы он отвечал задуманной схеме, и на выходе давал хорошую мощность.

В современных реалиях каждый домовладелец хорошо знаком с постоянным ростом стоимости коммунальных услуг – это касается и электрической энергии. Поэтому для создания комфортных условий обитания в загородном домостроении, как летом, так и зимой, придётся или оплачивать услуги по энергоснабжению, или найти альтернативный выход из сложившейся ситуации, благо природные источники энергии бесплатны.

Как сделать ветрогенератор своими руками - пошаговое руководство

Территория нашего государства – это по большей части равнины. Несмотря на то, что в городах доступ ветра перекрыт высотными постройками, за городом буйствуют сильные воздушные потоки. Поэтому самостоятельное изготовление ветряного генератора - единственно правильное решение для обеспечения загородного дома электричеством. Но для начала нужно разобраться, какая модель подходит для самостоятельного изготовления.

Роторный

Роторный ветряк – несложное преобразовательное устройство, которое просто сделать своими руками. Естественно, такое изделие не сможет обеспечить электроэнергией загородный особняк, но для дачного домика вполне сгодится. Он позволит осветить не только жиле домостроение а, и хозяйственные постройки и даже дорожки в саду. Для самостоятельной сборки агрегата мощностью до 1500 ватт нужно подготовить расходные материалы и комплектующие из следующего перечня:

Естественно, нужно иметь и минимальный комплект инструмента: ножницы для резки металла, болгарка, измерительная рулетка, карандаш, набор гаечных ключей и отвёрток, дрель со свёрлами и пассатижи.

Пошаговые действия

Сборку начинают с изготовления ротора и переделки шкива для чего придерживаются определённой последовательности работ.

Для подсоединения аккумуляторной батареи используются проводники с 4 мм сечением и длиной не более 100 см. Потребители подключаются проводниками с сечением в 2 мм. Важно в разрыв цепи включить преобразователь постоянного напряжения в переменное значение 220В согласно схеме клеммных контактов.

Плюсы и минусы конструкции

Если все манипуляции проделаны, верно, то аппарат прослужит достаточно долго. При использовании достаточно мощной аккумуляторной батареи и подходящего инвертора до 1,5 кВт можно обеспечить питанием уличное и внутридомовое освещение, холодильник и телевизор. Сделать такой ветряк очень просто и экономически выгодно. Такое изделие легко ремонтируется и неприхотливо в использовании. Оно очень надёжно в плане работы и не шумит, надоедая обитателям дома. Однако роторный ветряк имеет низкую производительность, и его работа зависит от наличия ветра.

Аксиальная конструкция с без железным статором на основе неодимовых постоянных магнитов, на территории нашего государства появились не так давно из-за недоступности комплектующих частей. Но на сегодняшний день, мощные магниты не являются редкостью, да и стоимость на них значительно упала по сравнению с несколькими годами тому назад.

Основой такого генератора является ступица с тормозными дисками от легковой машины. Если это будет не новая деталь, то целесообразно её перебрать и сменить смазочные материалы и подшипники.

Размещение и установка неодимовых магнитов

Работы начинают с наклеивания магнитов на диск ротора. С этой целью используются магниты в количестве 20 шт. и размерами 2,5 на 0,8 см. Для изменения количества полюсов нужно придерживаться следующих правил:

  • однофазный генератор подразумевает количество магнитов соответствующе числу полюсов;
  • в случае с трёхфазным прибором соблюдается соотношение в 2/3 полюсов и катушек соответственно;
  • размещение магнитов должно происходить с чередованием полюсов, для упрощения их распределения лучше пользоваться готовым шаблоном, сделанным из картона.

По возможности целесообразно использовать магниты прямоугольной формы, так как в круглых аналогах сосредоточение магнитных полей идёт в центре, а не по всей поверхности. Важно соблюсти условие, чтобы стоящие друг напротив друга магниты имели противоположные полюса. С целью определения полюсов магниты подносятся друг к другу, и притягивающиеся стороны являются положительными, следовательно, отталкивающиеся края отрицательными.

Для крепления магнитов используется специальный клеевой состав, после чего для увеличения прочности выполняют усиление посредством эпоксидной смолы. С этой целью, ею заливают магнитные элементы. Для предотвращения растекания смолы делают бортики при помощи обычного пластилина.

Агрегат трёхфазного и однофазного типа

Однофазные статоры по своим параметрам уступают трёхфазным аналогам, так как при увеличении нагрузки возрастает вибрация. Это обусловлено разницей амплитуды тока возникающей в результате непостоянности его отдачи за определённый промежуток времени. В свою очередь, в трёхфазном аналоге такой проблемы нет. Это позволило увеличить отдачу трёхфазного генератора почти на 50% в сравнении с однофазной моделью. Плюс ко всему из-за отсутствия дополнительной вибрации во время работы устройства не создаются посторонние шумы.

Намотка катушек

Каждый электрик в курсе, что прежде чем начинать намотку катушки, важно выполнить предварительные расчёты. Самодельный ветрогенератор на 220В – устройство, работающее на малых скоростях. Необходимо добиться, чтобы зарядка аккумуляторной батареи стартовала со 100 оборотов в минуту.

Если исходить из таких параметров, то для намотки всех катушек потребуется не более 1200 витков. Для определения витков для одной катушки нужно выполнить простое деление общих показателей на число отдельных элементов.

Для поднятия мощности ветряка с низкими оборотами увеличивается число полюсов. При этом будет происходить увеличение частоты тока в катушках. Намотка катушек должна, выполнятся толстыми медными проводами. Это позволит уменьшить величину сопротивления а, следовательно, увеличить силу тока. Важно учитывать, что с резким увеличением напряжения ток может полностью расходоваться на сопротивление обмоток. Для упрощения намотки можно использовать специальный станок.

В соответствии с числом и толщиной магнитов, закреплённых на дисках, изменяются рабочие характеристики аппарата. Чтобы выяснить, какие показатели мощности получатся в конечном счёте, достаточно выполнить намотку одного элемента и прокрутить его в агрегате. Для определения мощностных характеристик замеряется напряжение при определённых оборотах.

Зачастую катушка выполняется круглой, но целесообразно её слегка вытянуть. В таком случае меди в каждом секторе будет больше, а расположение витков становится плотнее. По диаметру внутреннее отверстие катушки должно равняться габаритам магнита. При изготовлении статора важно учитывать, что он по толщине должен равняться параметрам магнитов.

Обычно в качестве заготовки для статора используется фанера, но, вполне возможно, выполнить разметку на бумажном листе расчертив сектора для катушек, а для бордюров использовать обычный пластилин. Для придания прочности изделию используется стеклоткань, располагаемая на дне формы сверху катушек. Важно чтобы не происходило прилипания эпоксидной смолы к форме. Для этого её покрывают сверху воском. Катушки неподвижно фиксируются друг с другом, а концы фаз выводятся наружу. После чего выполняется соединение всех проводов по схеме звезда или треугольник. Для тестирования готового устройства его вращают вручную.

Обычно конечная высота мачты составляет 6 метров, но по возможности лучше её увеличить в 2 раза. Из-за этого для её крепления используется бетонное основание. Крепление должно быть таким, чтобы труба легко поднималась и опускалась с помощью лебёдки. На верхнем конце трубы выполняется фиксация винта.

Чтобы сделать винт, понадобиться ПВХ труба, сечение которой должно составлять 16 см. Из трубы вырезается винт двухметровой длины с шестью лопастями. Оптимальная форма лопастей определяется экспериментальным путём, что позволяет увеличить крутящий момент при минимальных оборотах. Для отвода винта от сильных порывов ветра используется хвост складной конструкции. Вырабатываемая электроэнергия накапливается в аккумуляторных батареях.

Видео: самодельный ветряной генератор

После рассмотрения доступных вариантов ветрогенераторов каждый домовладелец сможет определиться с подходящим для его целей устройством. Каждый из них имеет как свои положительные стороны, так и отрицательные качества. Особенно прочувствовать эффективность ветряка можно за городом, где происходит постоянное движение воздушных масс.

Получение электрической энергии с помощью ветра становится одним из модных трендов последнего времени. Бытовой ветряной генератор, который относится к техническим средствам альтернативной электроэнергетики, приобрел свою популярность вполне заслуженно, так как обращение к нему обеспечивает владельцу ряд преимуществ:

  • ветроэнергетика относится к экологически чистым средствам выработки электроэнергии, отсутствие генерация отходов;
  • удобен в использовании из-за своей высокой надежности и низких эксплуатационных расходов;
  • может быть смонтирован самостоятельно при наличии минимальных навыков в области строительства и электрики;
  • его привлекательность с течением времени будет только увеличиваться из-за неизбежного увеличения тарифов электросбытовых компаний.

Устройство и принцип работы

Любой ветряной генератор состоит из нескольких типовых укрупненных блоков. Агрегат обязательно содержит турбину, которая вращается под действием воздушного потока, непосредственно или чаще всего через повышающий редуктор передает создаваемый момент на вал электрического генератора. Ротор вращается внутри статора на основе неодимовых магнитов, в результате чего вырабатывается электрическая энергия.

Конструкция ветряного генератора небольшой мощности показана на рисунке 1.

Рис. 1. Конструкция самодельного ветрового генератора

Вырабатываемая ветряным генератором электрическая энергия поступает в промежуточный накопитель, функции которого обычно берет на себя аккумуляторная батарея. Ток, отдаваемый аккумулятором, питает инвертор, с выхода которого снимают нормальное 220-вольтовое переменное напряжение бытовой частоты.

Наличие аккумулятора обязательно, т.к. он позволяет сгладить колебания мощности, снимаемой с турбины. Свою роль в этом играет факт того, что бытовой ветряной генератор устойчиво функционирует при скорости ветра от 6 м/с и выше, тогда как среднегодовое значение этого параметра на большинстве территории России оказывается примерно в полтора раза ниже.

Необходимые переключения, регулировки и прочие функции реализует блок автоматики.

Соответствующий уровень эксплуатационной надежности достигается наличие у конструкции запасов по отдаваемой мощности (обычно 10 – 20%).

Виды ветряков

Основное отличие ветряных генераторов между собой — исполнение воздушной турбины, которая может иметь различную конструкцию. Обычно полная совокупность агрегатов по ориентации вала вращения турбины делят на две основные разновидности: вертикальные и горизонтальные.

Вертикальные

Отличительная особенность и главное преимущество вертикального агрегата ветряного генератора — отсутствие жестких требований к высоте его установки, что заметно упрощает выбор места установки, процесс монтажа, последующее обслуживание механически подвижных частей. Воздушная турбина относится к тихоходной разновидности этой техники, может быть исполнена как

  • простейший классический ротор с минимумом тремя вертикально ориентированными лопастями (пример такого устройства представлен на рисунке 2);
  • двухрядный ротор, наличие внутреннего ряа регулируемых лопастей обеспечивает ему повышенный КПД)
  • ротор Дарье;
  • ротор Савониуса;
  • геликоидный ротор.

Более сложная форма трех последних типов турбин обеспечивает им меньшую материалоемкость.


Рисунок 2. Роторная воздушная турбина вертикального ветрогенератора

Отличается минимумом подвижных частей, КПД установки мало зависит от направления ветра.

Горизонтальные

Ветрогенераторы с горизонтальной ориентацией вала турбины приводятся во вращение пропеллером. Пропеллер может быть двух-, трех и многолопастным. Лопастям некоторых пропеллеров иногда придают довольно сложную форму для некоторого увеличения эффективности функционирования установки. Пример такого агрегата показан на рисунке 3.


Рис. 3. Горизонтальный многолопастной ветрогенератор

За счет большого диаметра винта обычно монтируются на стальной трубчатой или решетчатой мачте на высоте вплоть до нескольких десятков метров. Примеры таких мачт показаны на рисунке 4 и рисунке 5. Оборотной стороной увеличения высоты установки становится снижение турбулентности воздушного потока из-за ослабевания влияния земли, т.е. увеличение КПД и генерируемой мощности. С учетом этой особенности не рекомендуется использовать ветряки этой конструкции для коттеджных поселков из-за сильного экранирующего действия соседних строений.


Рисунок 4. Мачта ферменной конструкции для установки горизонтального ветрогенератора
Рис. 5. Крепежный узел для мачты трубчатой конструкции

Для создания баланса по крутящему моменту генератор закрывают обтекателем вала таким образом, чтобы он выполнял функции противовеса винта. Дополнительно удлиненная конструкция корпуса облегчает его ориентацию “по потоку”.

По сравнению с вертикальным устройством позволяет снять большую мощность. Платой за это становится трудности с выбором места установки, сложность монтажа, текущего обслуживания, а также неприятные акустические шумы при работе. Кроме того, из-за большой высоты конструкции горизонтальные ветряные генераторы обязательно требуют молниезащиты.

Малые ветрогенераторы

К малым или бытовым ветрогенераторам обычно относят агрегаты с мощностью не свыше 5 кВт. В розничной продаже доступны агрегаты различной мощности и исполнения отечественного и импортного производства, что позволяет подобрать нужное устройство без переплаты.

Обычно агрегаты поставляются в минимальном комплекте, который:

  • включает контроллер;
  • не содержит буферной аккумуляторной батареи;
  • обеспечивает сборку агрегата на месте установки при условии отсутствия местных ограничений.

Проект установки устройств горизонтального типа из-за их технической сложности требует тщательной проработки, может потребоваться консультация специалиста.

Стоимость маломощных моделей начинается с нескольких десятков тысяч рублей, сильно зависит от отдаваемой мощности.

Автоматика ветроэлектростанций

Современные электрические ветровые установки оборудуются развитой системой автоматики, которая:

  • значительно улучшает характеристики;
  • обеспечивает выравнивание отдаваемой мощности;
  • делает эксплуатацию безопасной.

Типовой набор автоматики включает в себя:

  • ограничитель частоты вращения ветряного колеса при высоких скоростях ветра;
  • выравнивание колеса “по потоку” (важно для горизонтальных ветряков);
  • защиту от короткого замыкания;
  • отключение при отказах техники, ураганных ветрах, превышении порогового уровня вибрации.

Модели среднего и старшего классов обязательно поддерживают дистанционное управление и диагностику. Часть агрегатов дополнительно контролирует направление и силу воздушного потока для максимизации снимаемой мощности за счет выбора соответствующего угла установки всего устройства и лопастей турбины.

Система торможения

Система торможения предотвращает механическое разрушение агрегата при слишком высокой скорости ветра. Суть этой системы заключается в том, что автоматика производит замыкание электрических цепей магнитной системы генератора, что приводит к появлению мощного тормозящего усилия.

Дополнительно алгоритм функционирования системы управления предусматривает полный останов воздушной турбины при ветрах ураганной силы. Порог останова может регулироваться пользователем, типовые заводские настройки этого параметра предполагают включение режима останова при скорости 80 км/час.

Производители

Отечественной промышленностью налажен серийный выпуск широкой гаммы бытовых ветрогенераторов. Их параметры приведены в таблице:

Модель Производитель Тип Мощность Примечание
ВГ 0,25 Ветро Свет, Россия Г 250 Вт
ВЭУ-3(4) СКБ Искра, Россия В 3 кВт 4-лопастная модель
Серия L Ветроэнергетика, Россия В 0,8 – 10 кВт
RKraft Германия Г 0,5 – 5 кВт
Wind Generator М300 Китай В 100 – 270 Вт 6-лопастной ротор диаметром 1 м, масса 11 кг, не имеет контроллера
Condor Home EDS Group, Россия Г 500 Вт 3-лопастной стеклопластиковый ротор

Максимальная скорость ветра 25 м/с

Масса 56 кг

Примечание: Г – горизонтальный, В — вертикальный

Плюсы и минусы

Основное преимущество ветряных электростанций – это их автономность.

Главные технические минусы оборудования этой разновидности — зависимость от погоды (кроме силы ветра влияет также снег и дождь) и сравнительно небольшая мощность, значение которой в среднем не превышает нескольких сотен Ватт. Требуют обязательного применения промежуточной буферной аккумуляторной батареи, которая требует замены через несколько лет службы.

При сравнении с дизель-генераторами уступают им по продолжительности работы, но зато не требуют подвоза топлива и выполнения сложных и дорогостоящих мероприятий по пожарной безопасности его хранения.

Которые в средних широтах реально работают максимум пять месяцев, заметно превосходит тем, что функционируют круглый год.

При существующих тарифах на электроэнергию не дают существенного выигрыша по приведенным затратам, однако не оказываются убыточными.

Изготовители ветровых электростанций большое значение уделяют их внешнему оформлению. Так что наличие этого агрегата на загородном участке не только свидетельствует о “технической продвинутости” его обладателя, но и может стать важным элементом дизайна и наглядной демонстрации заботы об окружающей среде.

О эстетических параметрах можно судить по рисунку 6.


Рис. 6. Горизонтальный ветрогенератор Condor Home отечественного производства

Заключение.

Ветровые электростанции могут считаться полноценным альтернативным источником электрической энергии. С учетом типовых климатических условий большинства местностей нашей страны малые ветрогенераторы имеет смысл комбинировать в единую систему с солнечной батареей и дизельным генератором. В этом случае они вполне могут стать эффективным автономным вспомогательным средством выработки электроэнергии на даче или в загородном доме.



Рекомендуем почитать

Наверх