Генератор на постоянных магнитах. Экспериментальные исследования энергетической эффективности сверхединичных синхронных генераторов на постоянных магнитах Синхронные генераторы с постоянными магнитами

Идеи для ремонта 18.10.2019
Идеи для ремонта

Синхронные генераторы

с возбуждением от постоянных магнитов

(разработано в 2012 г.)

Предлагаемый генератор по принципу действия является синхронным генератором с возбуждением от постоянных магнитов. Магниты состава NeFeB, создающие магнитное поле с индукцией 1,35 Тл , расположены по окружности ротора с чередованием полюсов.

В обмотках генератора возбуждается э. д.с., амплитуда и частота которой определяются скоростью вращения ротора генератора.

Конструкция генератора не содержит коллектора с размыкаемыми контактами. Генератор также не имеет обмоток возбуждения, потребляющих дополнительный ток.

Преимущества генератора предлагаемой конструкции:

1. Обладает всеми положительными чертами синхронных генераторов с возбуждением от постоянных магнитов:

1) отсутствие токосъёмных щеток,

2) отсутствие тока возбуждения.

2. Большинство аналогичных выпускающихся в настоящее время генераторов при той же мощности имеют массо - габаритные параметров 1,5 – 3 раза больше.

3. Номинальная скорость вращения вала генератора – 1600 об ./мин . Она соответствует скорости вращения тихоходных дизельных приводов. Поэтому при переводе индивидуальных энергоустановок с бензиновых двигателей на дизельные с использованием нашего генератора, потребитель получит существенную экономию горючего и, как следствие, – стоимость киловатт-часа понизится.

4. Генератор имеет маленький стартовый момент страгивания (менее 2 Н×м ), т. е. для пуска достаточно мощности привода всего в 200 Вт , и запуск генератора возможен от самого дизеля при старте, даже без муфты сцепления. Аналогичные рыночные двигатели имеют разгонный период для создания запаса мощности при пуске генератора, т. к. при пуске бензиновый двигатель работает в режиме дефицита мощности.


5. При уровне надежности 90% ресурс генератора составляет 92 тыс. часов (10,5 лет безостановочной работы). Цикл же работы двигателя привода между капитальными ремонтами , заявляемый производителями (равно как и рыночных аналогов генератора) составляет 25 – 40 тыс. часов. То есть наш генератор по надежности на наработку превышает надежность серийных двигателей и генераторов в 2-3 раза.

6. Простота изготовления и сборки генератора – сборочным участком может быть слесарная мастерская при штучном и малосерийном производстве.

7. Простая адаптация генератора под выходное напряжение переменного тока:

1) 36 В , частота 50 – 400 Гц

2) 115 В , частота 50 – 400 Гц (аэродромные энергоустановки);

3) 220 В , частота 50 – 400 Гц ;

4) 380 В , частота 50 – 400 Гц .

Базовая конструкция генератора позволяет настраивать выпускаемое изделие на различную частоту и различное напряжение без изменения конструкции.

8. Высокая пожаробезопасность. Предлагаемый генератор не может стать источником пожара даже при коротком замыкании в цепи нагрузки или в обмотках, что заложено в конструкцию системы. Это очень важно при использовании генератора для бортовой электростанции в условиях замкнутого пространства водного судна, воздушного судна, а так же частного деревянного домостроения и т. п.

9. Низкий уровень шума.

10. Высокая ремонтопригодность.

Параметры генератора мощностью 0,5 кВт

Параметры генератора мощностью 2,5 кВт

ИТОГИ:

Предлагаемый генератор может изготавливаться для использования в электрогенераторных установках с частотой вращения вала 1500-1600 об/мин. - в дизельных, бензиновых и паро-генераторных электростанциях индивидуального пользования или в локальных энергетических системах. В паре с мультипликатором , электромеханический преобразователь энергии может использоваться и для генерации электроэнергии в низкооборотных генераторных системах, типа ветроэлектростанций, волновых электростанций и т. п. любой мощности. То есть сфера применения электро-механического преобразователя делает предлагаемый комплекс (мультипликатор-генератор) универсальным. Приведенные в тексте массогабаритные и иные электро-технические параметры дают предлагаемой конструкции явные конкурентные преимущества на рынке по сравнению с аналогами.

Заложенные в основу конструкции принципы изготовления, имеют высокую технологичность, в основе своей не требуют прецизионного станочного парка и ориентированы на массовое серийное производство. В итоге конструкция будет иметь низкую себестоимость серийного производства.

Полезная модель относится к электротехнике, а именно к электрическим машинам, и касается усовершенствования конструкции синхронных генераторов торцевого типа, которые могут быть использованы преимущественно для получения электрической энергии в ветроэнергетических установках. Конструкция генератора содержит корпус, в котором размещены чередующиеся элементы электромагнитной системы (ротор-статор-ротор), выполненные в виде дисков, установленных на неподвижном валу, где диск статора жестко связан с последним, на дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу, где корпус состоит из двух щитов - переднего и заднего, установленных на валу в подшипниках, передний щит имеет крышку-вал, диски роторов закреплены на указанных выше щитах, диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками. Достоинствами настоящего генератора являются: меньшие, по сравнению с известными машинами аналогичного типа той же мощности, массогабаритные показатели; надежность в эксплуатации; простота в изготовлении; высокий КПД; технологичность сборки-разборки генератора и его ремонтопригодность; возможность выполнять любых габаритов за счет крепления сердечника статора на неподвижном валу многолопастными звеньями с обеих сторон.

Полезная модель относится к электротехнике, а именно к электрическим машинам, и касается усовершенствования конструкции синхронных генераторов торцевого типа, которые могут быть использованы преимущественно для получения электрической энергии в ветроэнергетических установках.

Известен синхронный электрогенератор с возбуждением от постоянных магнитов , выполненный по торцевому типу, содержащий статор, состоящий из двух частей с кольцевыми магнитопроводами, расположенными соосно и параллельно друг другу, между которыми помещен ротор.

В используемой конструкции ротор выполнен в виде диска, на который с обеих его сторон закреплены постоянные магниты, вследствие чего возможно их перемагничивание с одной стороны на другую, что приводит к снижению характеристик постоянных магнитов, а, следовательно, уменьшению эффективности работы генератора.

Наиболее близким к заявляемому объекту является торцевой синхронный электрогенератор с возбуждением от постоянных магнитов , содержащий два ротора с постоянными магнитами и статор между ними с катушками, уложенными в радиальные пазы, находящимися на торцевой поверхности статора.

Размещение катушек в пазах приводит к уменьшению рабочего зазора, что может привести к залипанию сердечника статора с постоянными магнитами, вследствие чего генератор становится

неработоспособным. Применение пазов приводит к появлению нежелательных гармонических составляющих токов, индукции в зазоре, а, следовательно, к увеличению потерь и, соответственно, к уменьшению КПД генератора. Дисковые роторы связаны между собой силовыми шпильками, что уменьшает жесткость и надежность конструкции.

Технический результат заявляемого решения, в качестве полезной модели, заключается в устранении возможного залипания сердечника статора с постоянными магнитами, что обеспечит гарантированную работу генератора, и уменьшении потерь, а, следовательно, увеличении КПД за счет применения кольцевой обмотки статора. Данная модель имеет более жесткую конструкцию за счет соединения роторов между собой посредством крепления их к корпусу генератора, что повышает его надежность. Сердечник статора закреплен на неподвижном валу многолопастными звеньями с обеих сторон, что приводит к уменьшению массогабаритных показателей торцевого синхронного электрогенератора с возбуждением от постоянных магнитов и позволяет выполнить генератор с достаточно большими внутренним и внешним диаметрами. Предлагаемая модель позволяет обеспечить технологичность сборки-разборки генератора и его ремонтопригодность.

Полезная модель предполагает наличие корпуса, в котором располагаются чередующиеся элементы электромагнитной системы (ротор-статор-ротор), которые выполнены в виде дисков и установлены на неподвижном валу. При этом статор жестко связан с последним. На дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу. Корпус состоит из двух щитов - переднего и заднего, установленных на валу в

подшипниках. Передний щит имеет вал-крышку. Диски роторов закреплены на указанных выше щитах, а диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками.

На фиг.1 изображен генератор в продольном разрезе; на фиг.2 - статор (вид спереди).

Генератор состоит из статора 1 и двух роторов 2. Сердечник статора выполнен в виде диска, получаемого путем навивки ленты из электротехнической стали на оправку, наружный диаметр которой равен внутреннему диаметру статора. Сердечник закреплен между многолопастными звеньями 3 с обеих сторон. Каждая лопасть размещена в технологическом зазоре между катушками 4 кольцевой обмотки. Многолопастные звенья закреплены между собой болтами. Их основания выполнены в виде втулок, которые насажены на неподвижный вал 5. Во избежание возможного проворачивания статора звенья зафиксированы шпонкой 6. Для устранения осевого перемещения статора одно многолопастное звено прижато к буртику вала, а другое зажато стальной втулкой 7, прикручиваемой к валу по окружности тремя болтами. Вал имеет осевое отверстие, через которое концы обмотки выведены на клеммную коробку.

Сердечники роторов выполнены из конструкционной стали, как и сердечник статора, в виде дисков, ширина которых равна длине постоянного магнита 8. Постоянные магниты представляют собой кольцевые секторы и приклеены к сердечнику. Ширина магнитов равна ширине катушек статора и приближена к величине полюсного деления. Их размеры ограничены только шириной лопасти, помещаемой между катушками обмотки статора. Сердечники присоединены

винтами с потайными головками к внутренней стороне подшипниковых щитов 9 и 10. Применение винтов с потайными головками уменьшает уровень шума при работе генератора. Щиты выполнены из алюминиевого сплава. Соединены между собой также при помощи винтов с потайными головками - один из щитов имеет специальные углубления, в которые впрессованы стальные гайки (для упрочнения соединения, так как алюминий - мягкий материал), в которые уже и вкручены винты. В щиты установлены подшипники 11 с постоянно заполненной смазкой и двумя защитными шайбами. Подшипниковый щит 9 имеет вал-крышку 12, выполненную из стали. Она выполняет в данном генераторе две функции: а) закрывает подшипник; б) принимает вращение привода. Вал-крышка прикреплена к подшипниковому щиту 9 болтами с внутренней его стороны.

Работа данного генератора осуществляется следующим образом: привод передает крутящий момент через вал-крышку 12 всему корпусу, вследствие чего роторы приходят во вращение. Принцип же действия этого генератора аналогичен принципу действия известных синхронных генераторов: при вращении роторов 2 магнитное поле постоянных магнитов пересекает витки обмотки статора, изменяясь как по абсолютному значению, так и по направлению, и наводит в них переменную электродвижущую силу. Катушки обмотки соединяются последовательно таким образом, что их электродвижущие силы складываются. Генерируемое напряжение снимается с выводных концов обмотки, которые выходят на клеммную коробку через осевое отверстие в валу 5.

Данная конструкция генератора позволяет устранить возможное залипание сердечника статора с постоянными магнитами, а, следовательно, обеспечить гарантированную работу генератора; дает

возможность уменьшить пульсационные и поверхностные потери в стали за счет применения беспазового сердечника и кольцевой обмотки статора, вследствие чего увеличивается КПД. Также позволяет повысить надежность генератора из-за применения более жесткой конструкции (соединение роторов между собой посредством крепления их к корпусу генератора), уменьшить при той же мощности массогабаритные показатели и выполнять генератор любого габарита за счет крепления сердечника статора на неподвижном валу многолопастными звеньями с обеих сторон. Предлагаемая модель позволяет обеспечить технологичность сборки-разборки генератора и его ремонтопригодность.

Торцевой синхронный электрогенератор с возбуждением от постоянных магнитов, содержащий корпус, в котором размещены чередующиеся элементы электромагнитной системы (ротор - статор - ротор), выполненные в виде дисков, установленных на неподвижном валу, где диск статора жестко связан с последним, на дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу, отличающийся тем, что корпус состоит из двух щитов - переднего и заднего, установленных на валу в подшипниках, передний щит имеет вал-крышку, диски роторов закреплены на указанных выше щитах, диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками.

Возбуждение синхронной машины и её магнитные поля. Возбуждение синхронного генератора.

Обмотка возбуждения синхронного генератора (С.Г.) располагается на роторе и получает питание постоянным током от постороннего источника. Она создает основное магнитное поле машины, которое вращается вместе с ротором и замыкается по всему магнитопроводу. В процессе вращения это поле пересекает проводники обмотки статора и индуктирует в них ЭДС Е10.
Для питания обмотки возбуждения мощных С.Г. используются специальные генераторы – возбудители. Если они установлены отдельно, то питание в обмотку возбуждения подается через контактные кольца и щеточный аппарат. Для мощных турбогенераторов возбудители (синхронные генераторы «обращенного типа») навешивают на вал генератора и тогда обмотка возбуждения, получает питание через полупроводниковые выпрями-тели, установленные на валу.
Мощность, затрачиваемая на возбуждение, составляет примерно 0,2 - 5% от номинальной мощности С.Г., причем меньшая величина – для крупных С.Г.
В генераторах средней мощности часто используют систему самовозбуждения – от сети обмотки статора через трансформаторы, полупроводниковые выпрямители и кольца. В очень малых С.Г. иногда используют постоянные магниты, но это не позволяет регулировать величину магнитного потока.

Обмотка возбуждения может быть сосредоточенной (у явнопо-люсных синхронных генераторов) или распределенной (у неявнополюсных С.Г.).

Магнитная цепь С.Г.

Магнитная система С.Г. – это разветвленная магнитная цепь, имеющая 2р параллельных ветвей. При этом магнитный поток, созданный обмоткой возбуждения, замыкается по таким участкам магнитной цепи: воздушный зазор «?» – два раза; зубцовая зона статора hZ1 – два раза; спинка статора L1; зубцовый слой ротора «hZ2» - два раза; спинка ротора – «LОБ». В явнополюсных генераторах на роторе есть полюса ротора «hm» - два раза (вместо зубцового слоя) и крестовина LОБ (вместо спинки ротора).

На рисунке 1 видно, что параллельные ветви магнитной цепи симметричны. Видно также, что основная часть магнитного потока Ф замыкается по всему магнитопроводу и сцеплена как с обмоткой ротора, так и с обмоткой статора. Меньшая часть магнитного потока Фсигма(извените нету символа) замыкается только вокруг обмотки возбуждения, а затем по воздушному зазору не сцепляясь с обмоткой статора. Это магнитный поток рассеяния ротора.

Рисунок 1. Магнитные цепи С.Г.
явнополюсного (а) и неявнополюсного (б) типа.

В этом случае полный магнитный поток Фm равен:

где СИГМАm – коэффициент рассеяния магнитного потока.
МДС обмотки возбуждения на пару полюсов в режиме холостого хода можно определить как сумму составляющих МДС, необходимых на преодоление магнитных сопротивлений в соответствующих участках цепи.

Наибольшим магнитным сопротивлением обладает участок воз-душного зазора, у которого магнитная проницательность µ0 = const постоянна. В представленной формуле wВ – это число последовательно соединенных витков обмотки возбуждения на пару полюсов, а IВО – ток возбуждения в режиме холостого хода.

Сталь магнитопровода с увеличением магнитного потока имеет свойство насыщения, поэтому магнитная характеристика синхронного генератора нелинейна. Эту характеристику как зависимость магнитного потока от тока возбуждения Ф = f(IВ) или Ф = f(FВ) можно построить путем расчета или снять опытным путем. Она имеет вид, показанный на рисунке 2.

Рисунок 2. Магнитная характеристика С.Г.

Обычно С.Г. проектируют так, чтобы при номинальном значении магнитного потока Ф магнитная цепь была насыщена. При этом участок «ав» магнитной характеристики соответствует МДС на преодолении воздушного зазора 2Fсигма, а участок «вс» – на преодоление магнитного сопротивления стали магнитопровода. Тогда отношение можно назвать коэффициентом насыщения магнитопровода в целом.

Холостой ход синхронного генератора

Если цепь обмотки статора разомкнута, то в С.Г. существует только одно магнитное поле - созданное МДС обмотки возбуждения.
Синусоидальное распределение индукции магнитного поля, необходимое для получения синусоидальной ЭДС обмотки статора, обеспечивается:
- в явнополюсных С.Г. формой полюсных наконечников ротора (под серединой полюса зазор меньше, чем под его краями)и скосом пазов статора.
- в неявнополюсных С.Г. – распределением обмотки возбужде-ния по пазам ротора под серединой полюса зазор меньше, чем под его краями и скосом пазов статора.
В многополюсных машинах применяют обмотки статора с дроб-ным числом пазов на полюс и фазу.

Рисунок 3. Обеспечение синусоидальности магнитного
поля возбуждения

Поскольку ЭДС обмотки статора Е10 пропорциональна магнитному потоку Фо, а ток в обмотки возбуждения IВО пропорционален МДС обмотки возбуждения FВО, нетрудно построить зависимость: Е0 = f(IВО) идентичную магнитной характеристике: Ф = f(FВО). Эту зависимость называют характеристикой холостого хода (Х.Х.Х.) С.Г. Она позволяет определять параметры С.Г., строить его векторные диаграммы.
Обычно Х.Х.Х. строят в относительных единицах е0 и iВО, т.е. те-кущее значение величин относят к их номинальным значениям

В этом случае Х.Х.Х. называют нормальной характеристикой. Интересно то, что нормальные Х.Х.Х. практически для всех С.Г. одинаковы. В реальных условиях Х.Х.Х. начинается не из начала координат, а из некоторой точки на оси ординат, которая соответствует остаточной ЭДС е ОСТ., обусловленной остаточным магнитным потоком стали магнитопровода.

Рисунок 4. Характеристика холостого хода в относительных единицах

Принципиальные схемы возбуждения С.Г. с возбуждением а) и с самовозбуждением б) показаны на рисунке 4.

Рисунок 5. Принципиальные схемы возбуждения С.Г.

Магнитное поле С.Г. при нагрузке.

Чтобы нагрузить С.Г. или увеличить его нагрузку, надо уменьшить электрическое сопротивление между зажимами фаз обмотки статора. Тогда по замкнутым цепям фазных обмоток под действием ЭДС обмотки статора потекут токи. Если считать, что эта нагрузка симметрична, то токи фаз создают МДС трехфазной обмотки, которая имеет амплитуду

и вращается по статору с частотой вращения n1, равной частоте вращения ротора. Это значит, что МДС обмотки статора F3Ф и МДС обмотки возбуждения FВ, неподвижная относительно ротора, вращаются с одинаковыми скоростями, т.е. синхронно. Иначе говоря, они неподвижны относительно друг друга и могут взаимодейст-вовать.
В то же время в зависимости от характера нагрузки эти МДС могут быть по-разному ориентированы относительно друг друга, что изменяет характер их взаимодействия и, следовательно, рабочие свойства генератора.
Отметим еще раз, что воздействие МДС обмотки статора F3Ф = Fa на МДС обмотки ротора FВ называется «реакция якоря».
В неявнополюсных генераторах воздушный зазор между ротором и статором является равномерным, поэтому индукция В1, созданная МДС обмотки статора, распределена в пространстве как и МДС F3Ф = Fa синусоидально независимо от положения ротора и обмотки возбуждения.
В явнополюсных генераторах воздушный зазор неравномерен как за счет формы полюсных наконечников, так и за счет междуполюсного пространства, заполненного медью обмотки возбуждения и изоляционными материалами. Поэтому магнитное сопротивление воздушного зазора под полюсными наконечниками значительно меньше, чем в области междуполюсного пространства. Ось полюсов ротора С.Г. называют его продольной осью d - d, а ось междуполюсного пространства – поперечной осью С.Г. q - q.
Это значит, что индукция магнитного поля статора и график её распределения в пространстве зависят от положения волны МДС F3Ф обмотки статора относительно ротора.
Допустим, что амплитуда МДС обмотки статора F3Ф = Fa совпадает с продольной осью машины d - d, а пространственное распределение этой МДС синусоидально. Положим также, что ток возбуждение равен нулю Iво = 0.
Для наглядности изобразим на рисунке линейную развертку этой МДС, из которой видно, что индукция магнитного поля статора в области полюсного наконечника достаточно велика, а в области междуполюсного пространства резко снижается практически до нуля из - за большого сопротивления воздуха.


Рисунок 6. Линейная развертка МДС обмотки статора по продольной оси.

Такое неравномерное распределение индукции с амплитудой В1dmax можно заменить синусоидальным распределением, но с меньшей амплитудой В1d1max.
Если максимальное значение МДС статора F3Ф = Fa совпадает с поперечной осью машины, то картина магнитного поля будет иной, что видно из рисунка линейной развертки МДС машины.

Рисунок 7. Линейная развертка МДС обмотки статора по поперечной оси.

Здесь также величина индукции в районе полюсных наконечни-ков больше, чем в области междуполюсного пространства. И вполне очевидно, что амплитуда основной гармоники индукции поля статора В1d1 по продольной оси больше амплитуды индукции поля В1q1, по поперечной оси. Степень уменьшения индукции В1d1 и В1q1, которое обусловлено неравномерностью воздушного зазора учитывают с помощью коэффициентов:


Они зависят от многих факторов и, в частности, от отношения сигма/тау(извените нету символа) (относительная величина воздушного зазора), от отношения

(коэффициент полюсного перекрытия), где вп – ширина полюсного наконечника, и от других факторов.

Генератор - устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60· f / p

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС E A , E B и E C , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи I A , I B , I C , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn линейная скорость движения полюсов ротора относительно статора, м/с;
D внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = B max sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δ max (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r 1 и подвозбудителя r 2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ ) с выпрямительным трансформатором (ВТ ) и тиристорным преобразователем (ТП ), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ , на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН ) и тока нагрузки СГ (от трансформатора тока ТТ ). Схема содержит блок защиты (БЗ ), обеспечивающий защиту обмотки возбуждения (ОВ ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s - скольжение.

s = (n - n r)/n

здесь:
n - частота вращения магнитного поля (частота ЭДС).
n r - частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота .

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы .
Асинхронный генератор. Характеристики .
Асинхронный генератор. Стабилизация .

Замечания и предложения принимаются и приветствуются!

Трехфазный синхронный генератор переменного тока без магнитного залипания с возбуждением от постоянных неодимовых магнитов, 12 пар полюсов.

Очень давно еще в советские времена в журнале "Моделист Конструктор" была опубликована статья посвященная построению ветряка роторного типа. С тех пор у меня появилось желание построить что то подобное на своем дачном участке, но до реальных действий дело так и не дошло. Все изменилось с появлением неодимовых магнитов. Собрал кучу информации в интернете и вот что получилось.
Устройство генератора: Два стальных диска из низкоуглеродистой стали с наклеенными магнитами жестко соединены между собой через распорную втулку. В зазоре между дисками расположены неподвижные плоские катушки без сердечников. ЭДС индукции возникающая в половинках катушки противоположна по направлению и суммируется в общую ЭДС катушки. ЭДС индукции возникающая в проводнике движущемся в постоянном однородном магнитном поле определяется по формуле E=B·V·L где: B -магнитная индукция V -скорость перемещения L -активная длина проводника. V=π·D·N/60 где: D -диаметр N -скорость вращения. Магнитная индукция в зазоре между двумя полюсами обратно пропорциональна квадрату расстояния между ними. Генератор собран на нижней опоре ветряной турбины.

Схема трехфазного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема расположения катушек когда их количество в два раза больше, правда в этом случае увеличивается и зазор между полюсами. Катушки перекрываются на 1/3 от ширины магнита. Если ширину катушек уменьшить на 1/6 тогда они встанут в один ряд и зазор между полюсами не изменится. Максимальный зазор между полюсами равен высоте одного магнита.



Рекомендуем почитать

Наверх