Удельная теплоемкость вещества в твердом состоянии. Удельная теплоемкость газов и паров

Вопрос-ответ 20.10.2019
Вопрос-ответ

Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).

Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c . То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.

Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость - в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).

Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.

Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.

Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.

А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.

Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость - это характеристика вещества, но не тела.

Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».

Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:

Q = cm(t к – t н)

Здесь t к и t н - конечная и начальная температуры, m - масса вещества, c - его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость.

Физика и тепловые явления - это довольно обширный раздел, который основательно изучается в школьном курсе. Не последнее место в этой теории отводится удельным величинам. Первая из них — удельная теплоемкость.

Однако толкованию слова «удельный» обычно уделяется недостаточно внимания. Учащиеся просто запоминают его как данность. А что оно значит?

Если заглянуть в словарь Ожегова, то можно прочесть, что такая величина определяется как отношение. Причем оно может быть выполнено к массе, объему или энергии. Все эти величины обязательно полагается брать равными единице. Отношение к чему задается в удельной теплоемкости?

К произведению массы и температуры. Причем их значения обязательно должны быть равными единице. То есть в делителе будет стоять число 1, но его размерность будет сочетать килограмм и градус Цельсия. Это обязательно учитывается при формулировке определения удельной теплоемкости, которое дано немного ниже. Там же находится формула, из которой видно, что в знаменателе стоят именно эти две величины.

Что это такое?

Удельная теплоемкость вещества вводится в тот момент, когда рассматривается ситуация с его нагреванием. Без него невозможно узнать, какое количество теплоты (или энергии) потребуется затратить на этот процесс. А также вычислить ее значение при охлаждении тела. Кстати, эти два количества теплоты равны друг другу по модулю. Но имеют разные знаки. Так, в первом случае она положительная, потому что энергию нужно затратить и она передается телу. Вторая ситуация с охлаждением дает отрицательное число, потому что тепло выделяется, и внутренняя энергия тела уменьшается.

Обозначается эта физическая величина латинской буквой c. Определяется она как некоторое количество теплоты, необходимое для нагревания одного килограмма вещества на один градус. В курсе школьной физики в качестве этого градуса выступает тот, что берется по шкале Цельсия.

Как ее сосчитать?

Если требуется узнать, чему равна удельная теплоемкость, формула выглядит так:

с = Q / (m * (t 2 - t 1)), где Q — количество теплоты, m — масса вещества, t 2 - температура, которую тело приобрело в результате теплообмена, t 1 — начальная температура вещества. Это формула № 1.

Исходя из этой формулы, единица измерения этой величины в международной системе единиц (СИ) оказывается Дж/(кг*ºС).

Как найти другие величины из этого равенства?

Во-первых, количество теплоты. Формула будет выглядеть таким образом: Q = с * m * (t 2 - t 1). Только в нее необходимо подставлять величины в единицах, входящих в СИ. То есть масса в килограммах, температура — в градусах Цельсия. Это формула № 2.

Во-вторых, массу вещества, которое остывает или нагревается. Формула для нее будет такой: m = Q / (c * (t 2 - t 1)). Это формула под № 3.

В-третьих, изменение температуры Δt = t 2 - t 1 = (Q / c * m). Знак «Δ» читается как «дельта» и обозначает изменение величины, в данном случае температуры. Формула № 4.

В-четвертых, начальную и конечную температуры вещества. Формулы, справедливые для нагревания вещества, выглядят таким образом: t 1 = t 2 - (Q / c * m), t 2 = t 1 + (Q / c * m). Эти формулы имеют № 5 и 6. Если в задаче идет речь об охлаждении вещества, то формулы такие: t 1 = t 2 + (Q / c * m), t 2 = t 1 - (Q / c * m). Эти формулы имеют № 7 и 8.

Какие значения она может иметь?

Экспериментальным путем установлено, какие она имеет значения у каждого конкретного вещества. Поэтому создана специальная таблица удельной теплоемкости. Чаще всего в ней даны данные, которые справедливы при нормальных условиях.

В чем заключается лабораторная работа по измерению удельной теплоемкости?

В школьном курсе физики ее определяют для твердого тела. Причем его теплоемкость высчитывается благодаря сравнению с той, которая известна. Проще всего это реализуется с водой.

В процессе выполнения работы требуется измерить начальные температуры воды и нагретого твердого тела. Потом опустить его в жидкость и дождаться теплового равновесия. Весь эксперимент проводится в калориметре, поэтому потерями энергии можно пренебречь.

Потом требуется записать формулу количества теплоты, которое получает вода при нагревании от твердого тела. Второе выражение описывает энергию, которую отдает тело при остывании. Эти два значения равны. Путем математических вычислений остается определить удельную теплоемкость вещества, из которого состоит твердое тело.

Чаще всего ее предлагается сравнить с табличными значениями, чтобы попытаться угадать, из какого вещества сделано изучаемое тело.

Задача № 1

Условие. Температура металла изменяется от 20 до 24 градусов Цельсия. При этом его внутренняя энергия увеличилась на 152 Дж. Чему равна удельная теплоемкость металла, если его масса равна 100 граммам?

Решение. Для нахождения ответа потребуется воспользоваться формулой, записанной под номером 1. Все величины, необходимые для расчетов, есть. Только сначала необходимо перевести массу в килограммы, иначе ответ получится неправильный. Потому что все величины должны быть такими, которые приняты в СИ.

В одном килограмме 1000 граммов. Значит, 100 граммов нужно разделить на 1000, получится 0,1 килограмма.

Подстановка всех величин дает такое выражение: с = 152 / (0,1 * (24 - 20)). Вычисления не представляют особой трудности. Результатом всех действий является число 380.

Ответ: с = 380 Дж/(кг * ºС).

Задача № 2

Условие. Определить конечную температуру, до которой остынет вода объемом 5 литров, если она была взята при 100 ºС и выделила в окружающую среду 1680 кДж тепла.

Решение. Начать стоит с того, что энергия дана в несистемной единице. Килоджоули нужно перевести в джоули: 1680 кДж = 1680000 Дж.

Для поиска ответа необходимо воспользоваться формулой под номером 8. Однако в ней фигурирует масса, а в задаче она неизвестна. Зато дан объем жидкости. Значит, можно воспользоваться формулой, известной как m = ρ * V. Плотность воды равна 1000 кг/ м 3 . Но здесь объем потребуется подставлять в кубических метрах. Чтобы перевести их из литров, необходимо разделить на 1000. Таким образом, объем воды равен 0,005 м 3 .

Подстановка значений в формулу массы дает такое выражение: 1000 * 0,005 = 5 кг. Удельную теплоемкость потребуется посмотреть в таблице. Теперь можно переходить к формуле 8: t 2 = 100 + (1680000 / 4200 * 5).

Первым действием полагается выполнить умножение: 4200 * 5. Результат равен 21000. Второе — деление. 1680000: 21000 = 80. Последнее — вычитание: 100 - 80 = 20.

Ответ. t 2 = 20 ºС.

Задача № 3

Условие. Имеется химический стакан массой 100 г. В него налито 50 г воды. Начальная температура воды со стаканом равна 0 градусам Цельсия. Какое количество теплоты потребуется для того, чтобы довести воду до кипения?

Решение. Начать стоит с того, чтобы ввести подходящее обозначение. Пусть данные, относящиеся к стакану, будут иметь индекс 1, а к воде — индекс 2. В таблице необходимо найти удельные теплоемкости. Химический стакан сделан из лабораторного стекла, поэтому его значение с 1 = 840 Дж/ (кг * ºС). Данные для воды такие: с 2 = 4200 Дж/ (кг * ºС).

Их массы даны в граммах. Требуется перевести их в килограммы. Массы этих веществ будут обозначены так: m 1 = 0,1 кг, m 2 = 0,05 кг.

Начальная температура дана: t 1 = 0 ºС. О конечной известно, что она соответствует той, при которой вода кипит. Это t 2 = 100 ºС.

Поскольку стакан нагревается вместе с водой, то искомое количество теплоты будет складываться из двух. Первой, которая требуется для нагревания стекла (Q 1), и второй, идущей на нагревание воды (Q 2). Для их выражения потребуется вторая формула. Ее необходимо записать два раза с разными индексами, а потом составить их сумму.

Получается, что Q = с 1 * m 1 * (t 2 - t 1) + с 2 * m 2 * (t 2 - t 1). Общий множитель (t 2 - t 1) можно вынести за скобку, чтобы было удобнее считать. Тогда формула, которая потребуется для расчета количества теплоты, примет такой вид: Q = (с 1 * m 1 + с 2 * m 2) * (t 2 - t 1). Теперь можно подставить известные в задаче величины и сосчитать результат.

Q = (840 * 0,1 + 4200 * 0,05) * (100 - 0) = (84 + 210) * 100 = 294 * 100 = 29400 (Дж).

Ответ. Q = 29400 Дж = 29,4 кДж.

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Как вы думаете, что быстрее нагревается на плите: литр воды в кастрюльке или же сама кастрюлька массой 1 килограмм? Масса тел одинакова, можно предположить, что нагревание будет происходить с одинаковой скоростью.

А не тут-то было! Можете проделать эксперимент - поставьте пустую кастрюльку на огонь на несколько секунд, только не спалите, и запомните, до какой температуры она нагрелась. А потом налейте в кастрюлю воды ровно такого же веса, как и вес кастрюли. По идее, вода должна нагреться до такой же температуры, что и пустая кастрюля за вдвое большее время, так как в данном случае нагреваются они обе - и вода, и кастрюля.

Однако, даже если вы выждете втрое большее время, то убедитесь, что вода нагрелась все равно меньше. Воде потребуется почти в десять раз большее время, чтобы нагреться до такой же температуры, что и кастрюля того же веса. Почему это происходит? Что мешает воде нагреваться? Почему мы должны тратить лишний газ на подогрев воды при приготовлении пищи? Потому что существует физическая величина, называемая удельной теплоемкостью вещества.

Удельная теплоемкость вещества

Эта величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду. Как ни странно звучит, но это факт.

Расчет количества теплоты

Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты:

Q = c*m*(t2 - t1),

где Q - это количество теплоты,
c - удельная теплоемкость,
m - масса тела,
t2 и t1 - соответственно, конечная и начальная температуры тела.

Формула удельной теплоемкости: c = Q / m*(t2 - t1)

Также из этой формулы можно выразить:

  • m = Q / c*(t2-t1) - массу тела
  • t1 = t2 - (Q / c*m) - начальную температуру тела
  • t2 = t1 + (Q / c*m) - конечную температуру тела
  • Δt = t2 - t1 = (Q / c*m) - разницу температур (дельта t)

А что насчет удельной теплоемкости газов? Тут все запутанней. С твердыми веществами и жидкостями дело обстоит намного проще. Их удельная теплоемкость - величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.

При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение - постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:


Рекомендуем почитать

Наверх