Солнечная батарея для дома и дачи своими руками. Изготовление солнечной батареи для дома своими руками Элементы солнечных батарей своими руками

Профессионалы 09.03.2020
Профессионалы

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности - количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей .

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать , который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% - для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока - постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Гелиостанции - это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Углеводороды были и остаются основным источником энергии, однако все чаще человечество обращается к восполнимым и экологически безопасным ресурсам. Это стало причиной повышенного интереса к солнечным батареям и генераторам.

Однако многие не решаются на установку гелиосистемы из-за дороговизны обустройства комплекса. Удешевить продукцию можно, если взяться за ее создание самостоятельно. Сомневаетесь в собственных силах?

Мы расскажем вам, как сделать солнечную батарею своими руками, используя доступные комплектующие. В статье вы найдете всю необходимую информацию для того, чтобы выполнить расчет гелиосистемы, подобрать составляющие комплекса, осуществить сборку и установку фотопанели.

По статистике, взрослый человек ежедневно использует около десятка различных приборов, работающих от сети. Хотя электричество считается относительно экологичным источником энергии, это иллюзия, ведь при его получении используются ресурсы, загрязняющие окружающую среду.

Какие комплектующие нужны и где их купить

Основная деталь – солнечная фотопанель. Обычно кремниевые пластины покупают через интернет с доставкой из Китая или США. Это связано с высокой ценой на комплектующие отечественного производства.

Себестоимость отечественных пластин получается настолько высокой, что выгоднее заказать на Еbay. Что касается брака, то на 100 пластин лишь 2-4 непригодны к использованию. Если заказывать китайские пластины, то риски выше, т.к. качество оставляет желать лучшего. Преимущество – только в цене.

Готовая панель гораздо удобнее в использовании, но и втрое дороже, поэтому лучше все-таки озадачиться поиском комплектующих и собрать устройство своими руками

Остальные комплектующие можно купить в любом магазине электротоваров. Также потребуются оловянный припой, рама, стекло, пленка, лента и карандаш для разметки.

Галерея изображений

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.


Если вы решили собрать солнечную панель своими силами, то вы скорее всего столкнетесь с такой вещью, как пайка проводников на фотоэлементы. Сам по себе процесс пайки шин на солнечные элементы является очень кропотливым, поэтому сложным. Для того, чтобы ваше стремление к использованию альтернативных источников энергии не столкнулось с такой преградой, вы можете ознакомиться с основными аспектами правильной пайки проводников на элементы солнечной панели.

Материалы необходимы для пайки элементов:
1) солнечные элементы
2) тонкие плоские проводники
3) паяльник
4) широкие плоские проводники
5) флюс
6) припой

Рассмотрим более подробно все нюансы процесса пайки элементов солнечной панели.

Самое главное при данном процессе это не спешить. Сами солнечные элементы весьма тонкие и хрупкие, их толщина оставляет всего 0.2 мм, поэтому любое чрезмерное усилие или резкое движение может привести к их поломке.

В среднем на пайку одной солнечной панели состоящей из 36 элементов уходит порядка двух дней времени. Поэтому если вы решили собирать целые системы состоящие из множества солнечных панелей, то всерьез задумайтесь над количеством времени затраченным на пайку проводников, возможно приобретать солнечные элементы с уже готовыми проводниками будет для вас выгоднее.


Основной ошибкой тех, кто впервые решил собрать солнечную панель является то, что они считают достаточным приобрести в магазине только сами солнечные элементы, а остальное можно заменить аналогами продающимися на местном рынке радиодеталей. Однако данное видение не совсем верно, в солнечных панелях используются плоские проводники, которые обычными проводами заменять не рекомендуется, так как потребуются достаточно толстые провода, а это означает большие затраты времени на пайку, не эстетичный вид конструкции и к тому же, излишняя жесткость провода может стать причиной поломки самого элемента.

Именно поэтому автор рекомендует заказывать комплект солнечных элементов уже с диодами, шинами, тонкими плоскими проводниками для пайки элементов и более широкими для соединения секций между собой. Такой подход сэкономит как ваше время, так и деньги на доставку.

Так же нам понадобиться паяльник мощностью 60-80 Вт. Если паяльник будет менее мощным, то скорее всего он будет быстрее остывать из-за того, что большая поверхность солнечного элемента будет отбирать тепло, следовательно придется придавливать паяльник и дольше удерживать его на солнечном элементе. Это в свою очередь может вызвать поломку элемента либо его перегрев. В качестве припоя автор рекомендует использовать проволочное олово, можно даже с канифолью. В качестве флюса подойдет любой бескислотный для пайки радиоэлектроники, но желательно использовать тот, который не требует промывки и оставляет меньше жирных следов.

После того, как все необходимые инструменты и комплектующие были собраны, можно приступать к подготовке к пайке солнечных элементов. Для начала необходимо нарезать плоские проводники. Длину проводников необходимо рассчитать так, чтобы она была чуть короче ширины солнечного элемента. Таким образом, при использовании солнечных элементов размером 78 на 156 мм, длинна проводника должна составлять 146 мм, учитывая зазор в 5 мм между элементами. Распределение проводника по элементу идет следующим образом: 78 мм припаивается к лицевой части элемента, 5 мм оставляет на зазор между ними, а 63 мм припаивается к трем контактам расположенным на тыльной стороне элемента.

Довольно удобно производить нарезку проводников при помощи толстого картона. Берется два листа картона шириной 63 мм и толщиной 5 мм, они складываются вместе, и затем на них наматывается проводник. Затем картон раздвигается и с одной стороны проводник разрезается ножницами.


Так же следует заметить, что при пайке элементов 6 на 6, в целях экономии, допустимо паять шину не по всей длине, а оставшуюся часть просто залудить.

Однако запомните от того насколько качественно будут припаяны проводники будет сильно зависеть КПД всей солнечной батареи.

После нарезки проводника можно приступать к подготовке элементов для пайки. Обычно лицевая торона элементов является минусом, а тыльная плюсом. поэтому по всей длине контактной площадки лицевой стороны она промазывается флюсом.


Затем плоский проводник прикладывается и фиксируется паяльником. Лудить контакт не обязательно, так как на лицевой стороне контакты посеребрены, а на самой шине имеется тонкий слой олова. Главное чтобы шина крепко припаялась к контактам и хорошо держалась, в противном случае следует все же лудить.


После этого плавным движением припаивается проводник с обратной стороны элемента, главное следить за тем, чтобы в процессе сам элемент не перегревался.

Эти действия необходимо проделать с каждым элементом, после чего начинать пайку их в общую цепь. Стандартно принято соединять элементы последовательно от плюса к минусу в одну цепочку, таким образом напряжение всех элементов суммируется, а ток остается прежним.

Ниже приведена схема пайки элементов в общую цепь:



После того, как вы определились с итоговой формой солнечной панели следует разместить элементы в несколько рядов на рабочей поверхности тыльной стороной вверх.

Есть несколько моментов, которые помогут вам зафиксировать элементы во время пайки, чтобы в конце панель имела красивый и аккуратный вид. Края солнечных элементов можно прихватить скотчем, который в последствии просто срезается канцелярским ножом. Для того, чтобы расстояние между элементами было одинаково вы можете воспользоваться строительными крестиками, которые обычно используются для укладки плитки, эти крестики обеспечат зазор в 2-5 мм.

Лучше всего сделать целый макет из фанеры, на которую приклеиваются крестики.

Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

Что представляет собой солнечная батарея и для чего она используется?

Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

Чем больше площадь панелей, тем больше электрической энергии можно получить

Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

Преимущества и недостатки

К преимуществам солнечной батареи относятся:

  • простота монтажа и обслуживания;
  • отсутствие вреда для окружающей среды;
  • небольшая масса панелей;
  • бесшумная работа;
  • независящие от распределительной сети поставки электрической энергии;
  • неподвижность элементов конструкции;
  • небольшие денежные затраты на изготовление;
  • долгий срок эксплуатации.

В число недостатков солнечной батареи входят:

  • трудоёмкость процесса изготовления;
  • бесполезность в тёмное время суток;
  • потребность в большой площади для установки;
  • восприимчивость к загрязнениям.

Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

Инструменты и материалы

Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

При выборе фотоэлементов необходимо обратить внимание на следующее:

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.


Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников

На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.


Качество пайки является главным требованием для эффективной работы солнечной батареи

Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.


Проверка устройства выполняется на солнечной стороне

Как собрать корпус

  • Подготовить уголки из алюминия с невысокими бортиками.
  • Для метизов предварительно выполняются отверстия.
  • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
  • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
  • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
  • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Видео: Изготовление солнечной батареи своими руками в домашних условиях

Правила установки

Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

  1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
  2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
  3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
  4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

Изготовление устройства из подручных средств

На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

Использование старых транзисторов

Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.


Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

Применение диодов

Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.


Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

Устройство из листов меди

Чтобы изготовить солнечную батарею из листов меди, потребуется:

  • сами медные листы;
  • два зажима «крокодил»;
  • микроамперметр высокой чувствительности;
  • электрическая плита (не менее 1000 Вт);
  • пластиковая бутылка с обрезанным верхом;
  • две ложки поваренной соли;
  • вода;
  • наждачная бумага;
  • ножницы по листовому металлу.

Порядок действий:

  1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
  2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
  3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
  4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
  5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
  6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.

При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

Есть ли выгода?

КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.



Рекомендуем почитать

Наверх