Принцип действия счетчика гейгера и современные дозиметры. Счетчик Гейгера: устройство и бытовые вариации

Стройматериалы 14.06.2019
Стройматериалы

1.4 Счётчик Гейгера-Мюллера

В пропорциональном счётчике газовый разряд развивается только в части объёма газа. В ней образуется сначала первичная ионизация, а затем и лавина электронов. Остальной объём не охватывается газовым разрядом. С повышением напряжения критическая область расширяется. В ней увеличивается концентрация возбуждённых молекул, а следовательно, и количество испущенных фотонов. Под действием фотонов из катода и молекул газа вырывается

всё больше и больше фотоэлектронов. Последние в свою очередь дают начала новым лавинам электронов в объёме счётчика, не занятом газовым разрядом от первичной ионизации. Таким образом, повышение напряжения U приводит к распространению газового разряда по объёму счётчика. При некотором напряженииU п . Называемом пороговым, газовый разряд охватывает весь объём счётчика. При напряженииU п начинается область Гейгера-Мюллера.

Счётчик Гейгера (или счётчик Гейгера-Мюллера) − газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме.Изобретён в 1908 г. Х.Гейгером и Э.Резерфордом, позднее усовершенствован Гейгером и В. Мюллером. Счетчики Гейгера-Мюллера - самые распространенные детекторы (датчики) ионизирующего излучения.

Гейгера - Мюллера счётчик - газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений:α - и β -частиц, γ -квантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах и на ускорителях. Гамма-кванты регистрируются счётчиком Гейгера – Мюллера по вторичным ионизирующим частицам - фотоэлектронам, комптоновским электронам, электронно-позитронным парам; нейтроны регистрируются по ядрам отдачи и продуктам ядерных реакций, возникающим в газе счётчика. Работает счётчик при напряжениях, соответствующих самостоятельному

коронному разряду (участок V, Рис. 21 ).

Рис. 21. Схема включения счетчика Гейгера

Разность потенциалов приложена (V ) между стенками и центральным электродом через сопротивлениеR , зашунтированное конденсатором

C1 .

Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для

возникновения разряда достаточно одной электрон-ионной пары.

Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой конденсатор (как правило, цилиндрический), с сильно неоднородным электрическим полем. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал (анод), к внешнему – отрицательный (катод). Электроды заключены в герметически замкнутый резервуар, наполненный каким-либо газом до давления 13-26 кн/м 2 (100-200 мм pm .ст .). К электродам счётчика прикладывается напряжение в несколько сотв . На нить подаётся знак + через сопротивлениеR .

Функционально счётчик Гейгера также повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией (газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым газом. При этом коэффициент газового усиления может достигать 1010 , а величина импульса десятков вольт.

Возникает вспышка коронного разряда и через счётчик течёт ток.

Распределение электрического поля в счётчике таково, что разряд развивается лишь в вблизи анода счётчика на расстоянии нескольких диаметров нити. Электроны быстро скапливаются на нити (не более 10-6 сек), вокруг которой образуется «чехол» из положительных ионов. Положительный пространственный заряд увеличивает эффективный диаметр анода и снижает тем самым напряжённость поля, поэтому разряд прерывается. По мере удаления слоя положительных ионов от нити его экранирующее действие ослабляется и напряжённость поля вблизи анода становится достаточной для образования новой вспышки разряда. Положительные ионы, приближаясь к катоду, выбивают из последнего электроны, в результате чего образуются нейтральные атомы инертного газа в возбуждённом состоянии. Возбуждённые атомы при

достаточном приближении к катоду, выбивают из его поверхности электроны, которые становятся родоначальниками новых лавин. Без внешнего воздействия такой счётчик находился бы в длительном прерывистом разряде.

Таким образом, при достаточно большом R (108 -1010 ом ) на нити скапливается отрицательный заряд

и разность потенциалов между нитью и катодом быстро падает, в результате чего разряд обрывается. После этого чувствительность счётчика восстанавливается через 10-1 -10-3 сек (время разрядки ёмкости С через сопротивлениеR ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду,

и восстановилась чувствительность детектора. Такое большое время нечувствительности неудобно для многих применений.

Для практического использования несамогасящего счётчика Гейгера используются различные способы прекращения разряда:

а) Использование электронных схем гашения разряда в газе. Приспособленная для этого электронная схема, в нужное время выдаёт на счётчик «противосигнал», который прекращает самостоятельный разряд и «выдерживает» счётчик на время до полной нейтрализации возникших заряженных частиц. Характеристики такого счётчика со схемой гашения разряда близки к характеристикам самогасящихся счётчиков и иногда превосходят их.

б) Гашение за счёт подбора величин нагрузочного сопротивления и эквивалентной ёмкости, а также величины напряжения на счётчике.

В зависимости от механизма гашения разряда различают две группы счётчиков: несамогасящиеся и самогасящиеся. В несамогасящихся счётчиках «мёртвое» время слишком велико (10-2 сек), для его

уменьшения применяют электронные схемы гашения разряда, которые снижают разрешающее время до времени собирания положительных ионов на катоде (10-4 сек).

Сейчас несамогасящиеся счётчики, в которых гашение разрядов обеспечивается сопротивлением R , вытеснены самогасящимися счётчиками, которые к тому же более стабильны. В них благодаря специальному газовому наполнению (инертный газ с примесью сложных молекул, например паров спирта, и небольшой

примесью галогенов - хлора, брома, йода) разряд сам собой обрывается даже при малых сопротивлениях R . Время нечувствительности самогасящегося счётчика ~10-4 сек .

В 1937 г. Трост обратил внимание на то обстоятельство, что если в счетчик, наполненный аргоном,

добавить небольшое количество (несколько процентов) паров этилового спирта (С2 H5 OH), то разряд, вызванный в счетчике ионизирующей частицей, погаснет сам по себе. Впоследствии выяснилось, что самопроизвольное погасание разряда в счетчике имеет место и при добавлении к аргону паров других органических соединений, обладающих сложными многоатомными соединениями. Вещества эти называют обычно гасящими, а счётчики Гейгера-Мюллера, в которых используются эти вещества, называются счетчиками - самогасящегося типа. Самогасящийся счётчик наполняется смесью двух (или нескольких) газов. Один газ, основной, составляет в смеси около 90 %, другой, гасящий - около 10 %. Компоненты рабочей смеси должны удовлетворять обязательному условию, заключающемуся в том, что потенциал ионизации гасящего газа должен быть ниже первого потенциала возбуждения основного газа.

Замечание. Для регистрации рентгеновского излучения часто применяются проволочные ксеноновые детекторы. Примером может служить первый отечественный сканирующий цифровой медицинский флюорограф МЦРУ СИБИРЬ. Другое приложение рентгеновских счётчиков - рентгенофлуоресцентный волнодисперсионный спектрометр (например, Venus 200), предназначенный для определения различных элементах в веществах и материалах. В зависимости от определяемого элемента возможно применение следующих детекторов: - проточного пропорционального детектора с окнами толщиной 1, 2, 6 микрон, непроточного неонового детектора с окнами толщиной 25 и 50 микрон, - непроточного криптонового детектора с окном толщиной 100 микрон, - ксенонового детектора с окном 200 микрон и сцинтилляционного детектора с окном 300 микрон.

Самогасящиеся счётчики допускают большую скорость счёта без специальных электронных схем

гашения разряда, поэтому они нашли широкое применение. Самогасящиеся счётчики с органическими гасящими примесями имеют ограниченный срок работы (108 -1010 импульсов). При использовании в качестве гасящей примеси одного из галогенов (чаще всего применяется менее активный Br2 ) срок службы становится практически неограниченным из-за того, что двухатомные молекулы галогена после диссоциации на атомы (в процессе разряда) образуются снова. К недостаткам галогенных счётчиков следует отнести сложность технологии их изготовления из-за химической активности галогенов и большое время нарастания переднего фронта импульсов из-за прилипания первичных электронов к молекуле галогена. «Затягивание» переднего фронта импульса в галогенных счётчиках делает их неприменимыми в схемах совпадений.

Основными характеристиками счётчика являются: счётная характеристика – зависимость скорости счёта от величины рабочего напряжения; эффективность счётчика – выраженное в процентах отношение числа считаемых частиц к числу всех частиц, попадающих в рабочий объём счётчика; разрешающее время –

минимальный интервал времени между импульсами, при котором они регистрируются раздельно и срок службы счётчиков.

Рис. 22. Схема возникновения мёртвого времени в счётчике Гейгера-Мюллера. (Форма импульса при разряде в счётчике Гейгера-Мюллера).

Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие - «мертвое» время - является важной его паспортной характеристикой.

Если в счётчике Гейгера-Мюллера в момент временt 0 начался разряд, вызванный ядерной частицей, то напряжение на счётчике резко падает. Счётчик в течение определённого времени, которое называется мёртвым временемτ м , не способен регулировать другие частицы. С моментаt 1 , т.е. по истечении мёртвого времени, в счётчике снова возможно возникновение самостоятельного разряда. Однако вначале амплитуда импульса ещё мала. Только после того, как пространственный заряд достигнет поверхности катода, в счётчике образуются импульсы нормальной амплитуды. Отрезок времениτ с между моментомt 0 , когда в счётчике возник самостоятельный разряд, и моментом восстановления рабочего напряженияt 3 называется временем восстановления. Для того чтобы регистрирующее устройство могло сосчитать импульс, необходимо, чтобы его амплитуда превышала определённую величинуU п . Интервал времени между моментом возникновения самостоятельного разрядаt 0 и моментом образования амплитудыU п импульсаt 2 называется разрешающим временемτ p счётчика Гейгера-Мюллера. Разрешающее времяτ p несколько больше мёртвого времени.

Если ежесекундно в счетчик попадает большое число частиц (несколько тысяч и более), то разрешающее время τ р по величине будет сравнимо со средним промежутком времени между импульсами, поэтому значительное число импульсов не сосчитывается. Пустьm - наблюдаемая скорость счета счетчика. Тогда доля времени, в течение которого счетная установка нечувствительна, равнаm τ . Следовательно, число импульсов, потерянных за единицу времени, равноnm τ р , гдеn - скорость счета, которая наблюдалась бы в том случае, если бы разрешающее время имело пренебрежимо малую величину. Поэтому

n – m = nmτ р

−m τ

Поправка в скорости счета, которая дается этим уравнением, называется поправкой на мертвое время установки.

Галогеновые самогасящиеся счётчики отличаются самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Каждая фиксируемая счетчиком частица вызывает появление в его выходной цепи короткого импульса. Число импульсов, возникающих в единицу времени, - скорость счета счетчика Гейгера - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания V показан наРис. 23. ЗдесьV заж - напряжение начала счета;V 1 иV 2 - нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжениеV раб обычно выбирают в середине этого участка. Ему соответствуетN р - скорость счета в этом режиме.

Рис. 23. Зависимость скорости счета от напряжения питания в счетчике Гейгера (Счётная характеристика)

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика. График этой зависимости имеет почти линейный характер и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). В

тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности

счетчика приходится по другому его тоже очень важному параметру - собственному фону. Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода. («фон» в дозиметрии имеет почти тот же смысл, что и «шум» в радиоэлектронике; в обоих случаях речь идет о принципиально неустранимых воздействиях на аппаратуру.)

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рисунке. «Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

В своей основе счетчик Гейгера очень прост. В хорошо вакуумированный герметичный баллон с двумя электродами введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона. Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно».

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α ,β ,γ , ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции. Так, входное окно счетчика, чувствительного кα - и мягкому β -излучению, должно быть очень тонким; для этого обычно используют слюду толщиной 3...10 мкм. Баллон счетчика, реагирующего на жесткоеβ - и γ -излучение, имеет обычно форму цилиндра с толщиной стенки 0,05....0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

Рис. 24. Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые α - частицы. Фотонное излучение -ультрафиолетовое, рентгеновское, γ -излучение - счетчики Гейгера воспринимают опосредованно - через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Рис. 25. Радиометрическая установка на базе счётчика Гейгера-Мюллера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы – по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α -частиц, электронов, γ -квантов (в счетчике, на все эти виды излучения реагирующем), ничем не различаются. Сами

частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

О качестве счетчика Гейгера-Мюллера судят обычно по виду его счетной характеристики. Для «хороших» счетчиков протяженность счетной части составляет 100-300 В при наклоне плато не более 3 - 5 % на 100 В. Рабочее напряжение счетчикаV раб выбирают обычно в середине его счетной области.

Поскольку скорость счета частиц на плато изменяется пропорционально интенсивности облучения ядерными частицами, счетчики Гейгера-Мюллера с успехом используются для относительных измерений активности радиоактивных источников. Абсолютные измерения затрудняются вследствие учета большого числа дополнительных поправок. При работе с источниками малой интенсивности следует учесть фон счетчика, обусловленный космическим излучением, радиоактивностью окружающей среды и радиоактивным загрязнением материала счетчика. В качестве наполняющих счетчик газов первоначально чаще всего использовались благородные газы, в частности, аргон и неон. У большинства счетчиков давление лежит в интервале от 7 до 20 см рт.ст, хотя они иногда работают и при больших давлениях, вплоть до 1 атм. В счётчиках такого типа необходимо применять специальные электронные схемы для гашения газового разряда, возникшего при попадании в счетчик ионизирующего излучения. Поэтому такие счетчики называются счетчиками Гейгера-Мюллера несамогасящегося типа. Они обладают весьма плохой разрешающей способностью. Применение схем для принудительного гашения разряда, улучшая

разрешающую способность, существенно усложняет экспериментальную установку, особенно в случае использования большого числа счетчиков одновременно.

Типичный стеклянный счётчик Гейгера-Мюллера представлен наРис. 25.

Рис. 25. Стеклянный счётчик Гейгера-Мюллера: 1 –

геометрически запаянная стеклянная трубка; 2 – катод (тонкий слой меди на трубке из нержавеющей стали); 3 – вывод катода; 4 – анод (тонкая натянутая нить).

В Табл. 1 приведены сведения о самогасящихся галогеновых счетчиках Гейгера

российского производства, наиболее подходящих для бытовых приборов радиационного контроля.

Обозначения: 1 - рабочее напряжение, В; 2 - плато - область малой зависимости скорости счета от напряжения питания, В; 3 - собственный фон счетчика, имп/с, не более; 4 - радиационная чувствительность счетчика, имп/мкР (* - по кобальту-60); 5 - амплитуда выходного импульса, В, не менее; 6 - габариты, мм - диаметр х длина (длина х ширина х

высота); 7.1 - жесткое β - иγ - излучение; 7.2 - то же и мягкоеβ - излучение; 7.3 - то же иα - излучение; 7.4 -γ - излучение.

Рис.26. Часы со встроенным счётчиком Гейгера-Мюллера.

Счетчик Гейгера-Мюллера, типа СТС-6, считаетβ иγ частицы и относится к самогасящимся счетчикам. Он представляет собой цилиндр из нержавеющей стали с толщиной стенок 50 мг/(см2 с) ребрами жесткости для прочности. Счетчик заполнен смесью паров неона и брома. Бром гасит разряд.

Конструкции счётчиков весьма разнообразны и зависят от вида излучения и его энергии, а также от методики измерения).

Радиометрическая установка на базе счётчика Гейгера - Мюллера представлена на Рис. 27. Напряжение на счётчик подаётся с высоковольтного источника питания. Импульсы со счетчика подаются в блок усилителя, где они усиливаются, и затем регистрируются пересчётным устройством.

Счётчики Гейгера-Мюллера применяются для регистрации всех видов излучения. Они могут быть использованы как для абсолютных, так и для относительных измерений радиоактивных излучений.

Рис. 27. Конструкция счётчиков Гейгера-Мюллера: а – цилиндрический; б

внутреннего наполнения; г – проточный для жидкостей. 1 – анод (собирающий электрод); 2 – катод; 3 – стеклянный баллон; 4 – выводы электродов; 5 – стеклянная трубка; 6 – изолятор; 7 – слюдяное окно; 8 – кран для впуска газа.

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Несмотря на то, желаем мы того или нет, но термин «радиация» надолго вклинился в наше сознание и бытие, и никому не скрыться от факта ее присутствия. Людям приходится учиться жить с этим в какой-то мере негативным феноменом. Явление радиации может проявлять себя при помощи невидимых и неощутимых излучений, и без специальной аппаратуры выявить его практически нереально.

Из истории изучения радиации

В 1895 году произошло открытие рентгеновских лучей. Уже через год был открыт феномен радиоактивности урана, также связанный с открытием и применением рентгеновских лучей. Исследователям пришлось столкнуться с абсолютно новым, невиданным до той поры природным явлением.

Следует отметить, что с феноменом радиации уже сталкивались за несколько лет до этого, однако явлению не было уделено должного внимания. И это при том, что обжигались рентгеновскими лучами даже знаменитый Никола Тесла, а также рабочий персонал в лаборатории Эдисона. Ухудшение здоровья объясняли всем, чем только могли, но не излучением.

Позднее с началом XX столетия произошло появление статьей о вредоносном воздействии радиации на подопытных животных. Это также прошло без внимания до одного нашумевшего происшествия, в котором пострадали «радиевые девушки» – работницы фабрики, выпускавшей светящиеся часы.

Руководство фабрики рассказало девушкам о безвредности радия, и они принимали смертельные дозы радиации: облизывали кончики кисточек с радиевой краской, ради развлечения красили ногти и даже зубы светящейся субстанцией. Пяти девушкам, которые пострадали от такой работы, удалось подать на фабрику судебный иск. В результате чего был создан прецедент по отношению к правам некоторых рабочих, которые получали профессиональные заболевания и подавали в суд на своих работодателей.

История появления счетчика Гейгера — Мюллера

Немецкий физик Ганс Гейгер, работавший в одной из лабораторий Резерфорда, в 1908 году разработал и предложил принципиальную схему действия счетчика «заряженных частиц». Он представлял собой модификацию уже знакомой тогда ионизационной камеры, которая была представлена в виде электрического конденсатора, наполненного газом с небольшим давлением. Камеру применял еще Пьер Кюри, когда изучал электрические свойства газов. Гейгер придумал ее употребить для выявления ионизирующего излучения именно оттого, что это излучение оказывало непосредственное воздействие на уровень ионизации газов.

В конце 20-х годов Вальтер Мюллер под руководством Гейгера создал некоторые типы счетчиков радиации, при помощи которых можно было регистрировать самые разнообразные ионизирующие частицы. Работа над созданием счетчиков была весьма необходимой, потому что без них нельзя было исследовать радиоактивные материалы. Гейгеру с Мюллером пришлось целеустремленно поработать над сотворением таких счетчиков, которые были бы чувствительны к любой из выявленных на то время разновидностей излучений типа α, β и γ.

Счетчики Гейгера-Мюллера оказались простыми, надежными, дешевыми, а также практичными датчиками радиации. Это при том, что они не являлись самыми точными инструментами для изучения излучения или некоторых частиц. Зато очень хорошо подходили в качестве приборов для общих измерений насыщенности ионизирующего излучения. В сочетании с другими приборами они и сейчас употребляются физиками-практиками для более точных замеров в процессе экспериментирования.

Что такое ионизирующее излучение?

Для лучшего понимания работы счетчиков Гейгера-Мюллера не мешало бы ознакомиться с ионизирующим излучением как таковым. К нему может относиться все то, что вызывает ионизацию веществ, находящихся в естественном состоянии. Для этого потребуется присутствие какой-то энергии. В частности, ультрафиолетовый свет либо радиоволны не причисляются к ионизирующему излучению. Разграничение может начинаться так называемым «жестким ультрафиолетом», еще именуемым «мягким рентгеном». Такая разновидность потока называется фотонное излучение. Поток фотонов высокой энергии — это гамма-кванты.

В первый раз разделение ионизирующего излучения по трем видам было проделано Эрнстом Резерфордом. Все производилось на исследовательском оборудовании, в котором было задействовано магнитное поле в пустом пространстве. В дальнейшем все это было названо:

  • α – ядрами атомов гелия;
  • β – электронами высокой энергии;
  • γ – гамма-квантами (фотонами).

Позднее произошло открытие нейтронов. Так, выяснилось, что альфа-частицы могут с легкостью задерживаться даже с помощью обыкновенной бумаги, бета-частицы обладают несколько большей проникающей способностью, а гамма-лучи – самой высокой. Самыми опасными считаются нейтроны, особенно на дистанции во много десятков метров в воздушном пространстве. Вследствие их электрической индифферентности, они не вступают во взаимодействие ни с какой электронной оболочкой молекул в веществе.

Однако при попадании в атомные ядра с высоким потенциалом приводят к их неустойчивости и распаду, после чего образуются радиоактивные изотопы. А те, далее в процессе распада, сами образуют всю полноту ионизирующего излучения.

Устройства счетчика Гейгера-Мюллера и принципы работы

Газоразрядные счетчики Гейгера-Мюллера, главным образом, выполняются как герметичные трубки, стеклянные или металлические, из которых выкачан весь воздух. Его заменяют добавленным инертным газом (неоном или аргоном или их смесью) при невысоком давлении, с галогеновым или спиртовыми примесями. По осям трубок натянуты тонкие проволоки, а соосно с ними расположены металлические цилиндры. И трубки и проволоки — это электроды: трубки – катоды, а проволоки – аноды.

К катодам подключаются минусы от источников постоянного напряжения, а к анодам – с использованием большого постоянного сопротивления – плюсы от источников с постоянным напряжением. С электрической точки зрения выходит делитель напряжения. а в середине него уровень напряжения почти такой же, как напряжение на источнике. Как правило, он может доходить до нескольких сот вольт.

В процессе пролета ионизирующих частиц через трубки, атомы в инертном газе, которые уже находятся в электрополе высокой интенсивности, сталкиваются с этими частицами. Та энергия, которая была отдана частицами в процессе столкновения немалая, ее хватит для того, чтобы оторвались электроны от атомов газа. Образовавшиеся электроны вторичного порядка сами в состоянии формировать дальнейшие столкновения, после чего выходит целый электронный и ионный каскад.

При воздействии электрополя происходит ускорение электронов по направлению к анодам, а положительно заряженных ионов газа – к катодам трубок. Вследствие этого зарождается электроток. Поскольку энергию частиц уже израсходовали для столкновений, целиком или отчасти (частицы пролетели через трубку), ионизированные атомы газа стали заканчиваться.

Как только заряженные частицы попали в счетчик Гейгера-Мюллера, путем зарождающегося тока произошло падение сопротивления трубки, одновременно с этим изменяется напряжение в центральной отметке разделителя, о чем было указано ранее. После этого сопротивление в трубке в результате его роста возобновляется, а уровень напряжения снова приходит в прежнее состояние. В результате, получаются отрицательные импульсы напряжения. Произведя отсчет импульсов, можно установить количество частиц, которые пролетели. Самая большая интенсивность электрополя наблюдается рядом с анодом, благодаря его малым размерам, вследствие этого счетчики становятся более чувствительными.

Конструкции счетчиков Гейгера-Мюллера

У всех современных счетчиков Гейгера-Мюллера имеются две основные разновидности: «классическая» и плоская. Классические счетчики выполняются из тонкостенных гофрированных металлических трубок. Гофрированные поверхности счетчиков делают трубки жесткими, они устоят перед внешним атмосферным давлением, и не дадут им мяться под любыми воздействиями. С торцов трубок имеются стеклянные или пластмассовые гермоизоляторы. Там же находятся отводы-колпачки, чтобы подключаться к схеме. Трубки маркированы и покрыты с помощью прочного изолирующего лака с указанием полярности отводов. Вообще это универсальные счетчики для любой разновидности ионизирующего излучения, особенно для бета-гамма-излучений.

Счетчики, которые могут быть чувствительными к мягким β-излучениям, производятся по-иному. Вследствие малых пробегов β-частиц, их делают плоскими. Слюдяные окошки слабо задерживают бета-излучения. Одним таким счетчиком можно назвать датчик БЕТА-2. Во всех остальных счетчиках определение их свойств относят к материалам их изготовления.

Все счетчики, которые регистрируют гамма-излучение, обладают катодами, изготовленными из таких металлов, в которых присутствует большое зарядовое число. Газы чрезвычайно неудовлетворительно ионизируются с помощью гамма-фотонов. Тем не менее, гамма-фотоны могут выбивать множество электронов вторичного происхождения из катодов, если выбирать их надлежащим образом. Большинство счетчиков Гейгера-Мюллера для бета-частиц изготавливаются так, чтобы у них были тонкие окна. Это делается, чтобы улучшить проницаемость частиц, потому что это всего лишь обычные электроны, получившие больше энергии. С веществами у них происходит взаимодействие очень хорошее и быстрое, вследствие этого энергия теряется.

С альфа-частицами дела обстоят куда сквернее. Например, невзирая на довольно-таки порядочную энергию, несколько МэВ, у альфа-частиц происходит весьма сильное взаимодействие с молекулами, движущимися в пути и скоро теряющими энергетический потенциал. Обычные счетчики неплохо реагируют на α-излучения, но исключительно на удалении в несколько сантиметров.

Чтобы произвести объективную оценку уровня ионизирующего излучения дозиметры на счетчиках с общим применением нередко снабжаются двумя последовательно функционирующими счетчиками. Один может быть более чувствительным к α-β-излучениям, а другой к γ-излучению. Порой среди счетчиков помещаются бруски или пластины из сплавов, в которых имеются примеси кадмия. При попадании нейтронов в такие бруски возникает γ-излучение, которое и регистрируется. Это делается для возможного определения нейтронного излучения, а к нему у простых счетчиков Гейгера практически отсутствует чувствительность.

Как на практике применяются счетчики Гейгера

Советской, а сейчас уже и российской промышленностью выпускается множество разновидностей счетчиков Гейгера-Мюллера. Такими приборами главным образом пользуются люди, которые имеют какое-то отношение к объектам ядерной индустрии, к научным или учебным учреждениям, к гражданской обороне, к медицинской диагностике.

После того, как произошла чернобыльская катастрофа, бытовые дозиметры, раньше абсолютно незнакомые населению нашей страны даже по наименованию, начали приобретать поистине всенародную популярность. Начало появляться множество моделей бытового назначения. Во всех них используются собственно счетчики Гейгера-Мюллера в качестве датчиков радиации. Обычно в бытовых дозиметрах устанавливаются одна-две трубки или торцевые счетчики.


Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» - работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений.

Как появился счетчик Гейгера - Мюллера

Немецкий физик Ганс Гейгер, работавший в лаборатории Эрнста Резерфорда, в 1908 году предложил принцип работы счетчика «заряженных частиц» как дальнейшее развитие уже известной ионизационной камеры, которая представляла собой электрический конденсатор, наполненный газом при небольшом давлении. Она применялась еще Пьером Кюри с 1895 года для изучения электрических свойств газов. У Гейгера возникла идея использовать ее для обнаружения ионизирующих излучений как раз потому, что эти излучения оказывали прямое воздействие на степень ионизации газа.

В 1928 году Вальтер Мюллер, под началом Гейгера, создает несколько типов счетчиков радиации, предназначенных для регистрации различных ионизирующих частиц. Создание счетчиков было очень острой необходимостью, без которой невозможно было продолжать исследование радиоактивных материалов, поскольку физика, как экспериментальная наука, немыслима без измерительных приборов. Гейгер и Мюллер целенаправленно работали над созданием счетчиков, чувствительных к каждому из открытых к тому видов излучений: α, β и γ (нейтроны открыли только в 1932 году).

Счетчик Гейгера-Мюллера оказался простым, надежным, дешевым и практичным датчиком радиации. Хотя он не является самым точным инструментом для исследования отдельных видов частиц или излучений, однако на редкость подходит в качестве прибора для общего измерения интенсивности ионизирующих излучений. А в сочетании с другими детекторами используется физиками и для точнейших измерений при экспериментах.

Ионизирующие излучения

Чтобы лучше понять работу счетчика Гейгера-Мюллера, полезно иметь представление об ионизирующих излучениях вообще. По определению, к ним относится то, что может вызвать ионизацию вещества, находящегося в нормальном состоянии. Для этого необходима определенная энергия. Например, радиоволны или даже ультрафиолетовый свет не относятся к ионизирующим излучениям. Граница начинается с «жесткого ультрафиолета», он же «мягкий рентген». Этот вид является фотонным видом излучения. Фотоны большой энергии принято называть гамма-квантами.

Впервые разделил ионизирующие излучения на три вида Эрнст Резерфорд. Это было сделано на экспериментальной установке при помощи магнитного поля в вакууме. Впоследствии выяснилось, что это:

α - ядра атомов гелия
β - электроны с высокой энергией
γ - гамма-кванты (фотоны)

Позже были открыты нейтроны. Альфа-частицы легко задерживаются даже обычной бумагой, бета-частицы имеют немного большую проникающую способность, а гамма-лучи - самую высокую. Наиболее опасны нейтроны (на расстоянии до многих десятков метров в воздухе!). Из-за их электрической нейтральности они не взаимодействуют с электронными оболочками молекул вещества. Но попав в атомное ядро, вероятность чего достаточно высока, приводят к его нестабильности и распаду, с образованием, как правило, радиоактивных изотопов. А уже те, в свою очередь, распадаясь, сами образуют весь «букет» ионизирующих излучений. Хуже всего то, что облученный предмет или живой организм сам становится источником радиации на протяжении многих часов и суток.

Устройство счетчика Гейгера-Мюллера и принцип его работы

Газоразрядный счетчик Гейгера-Мюллера, как правило, выполняется в виде герметичной трубки, стеклянной или металлической, из которой откачан воздух, а вместо него добавлен инертный газ (неон или аргон или их смесь) под небольшим давлением, с примесью галогенов или спирта. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка - катод, а проволока - анод. К катоду подключают минус от источника постоянного напряжения, а к аноду - через большое постоянное сопротивление - плюс от источника постоянного напряжения. Электрически получается делитель напряжения, в средней точке которого (место соединения сопротивления и анода счетчика) напряжение практически равно напряжению на источнике. Обычно это несколько сотен вольт.

Когда сквозь трубку пролетает ионизирующая частица, атомы инертного газа, и так находящиеся в электрическом поле большой напряженности, испытывают столкновения с этой частицей. Энергии, отданной частицей при столкновении, хватает для отрыва электронов от атомов газа. Образующиеся вторичные электроны сами способны образовать новые столкновения и, таким образом, получается целая лавина электронов и ионов. Под действием электрического поля, электроны ускоряются в направлении анода, а положительно заряженные ионы газа - к катоду трубки. Таким образом, возникает электрический ток. Но так как энергия частицы уже израсходована на столкновения, полностью или частично (частица пролетела сквозь трубку), то кончается и запас ионизированных атомов газа, что является желательным и обеспечивается кое-какими дополнительными мерами, о которых мы поговорим при разборе параметров счетчиков.

При попадании в счетчик Гейгера-Мюллера заряженной частицы, за счет возникающего тока падает сопротивление трубки, а вместе с ним и напряжение в средней точке делителя напряжения, о которой шла речь выше. Затем сопротивление трубки вследствие возрастания ее сопротивления восстанавливается, и напряжение опять становится прежним. Таким образом, мы получаем отрицательный импульс напряжения. Считая импульсы, мы можем оценить число пролетевших частиц. Особенно велика напряженность электрического поля вблизи анода из-за его малых размеров, что делает счетчик более чувствительным.

Конструкции счетчиков Гейгера-Мюллера

Современные счетчики Гейгера-Мюллера выпускаются в двух основных вариантах: «классическом» и плоском. Классический счетчик выполняют из тонкостенной металлической трубки с гофрированием. Гофрированная поверхность счетчика делает трубку жесткой, устойчивой к внешнему атмосферному давлению и не дает ей сминаться под его действием. На торцах трубки расположены герметизирующие изоляторы из стекла или термореактивной пластмассы. В них же находятся выводы-колпачки для подключения к схеме приборов. Трубка снабжена маркировкой и покрыта прочным изолирующим лаком, не считая, конечно, ее выводов. Полярность выводов также обозначена. Это универсальный счетчик для любых видов ионизирующих излучений, особенно для бета и гамма.

Счетчики, чувствительные к мягкому β-излучению, делаются иначе. Из-за малого пробега β-частиц, их приходится делать плоскими, со слюдяным окошком, которое слабо задерживает бета-излучение, одним из вариантов такого счетчика, является датчик радиации БЕТА-2 . Все остальные свойства счетчиков определяются материалами, из которых их изготавливают.

Счетчики, предназначенные для регистрации гамма-излучения, содержат катод, изготовленный из металлов с большим зарядовым числом, или покрывают такими металлами. Газ крайне плохо ионизируется гамма-фотонами. Но зато гамма-фотоны способны выбить много вторичных электронов из катода, если его выбрать подходящим образом. Счетчики Гейгера-Мюллера для бета-частиц делают с тонкими окнами для лучшей проницаемости частиц, поскольку они являются обычными электронами, всего лишь получившими большую энергию. С веществом они взаимодействуют весьма хорошо и быстро эту энергию теряют.

В случае альфа-частиц дело обстоит еще хуже. Так, несмотря на весьма приличную энергию, порядка нескольких МэВ, альфа-частицы очень сильно взаимодействуют с молекулами, находящимися на пути, и быстро теряют энергию. Если вещество сравнить с лесом, а электрон с пулей, то тогда альфа-частицы придется сравнивать с танком, ломящимся через лес. Впрочем, обычный счетчик хорошо реагирует на α-излучение, но только на расстоянии до нескольких сантиметров.

Для объективной оценки уровня ионизирующих излучений дозиметры на счетчиках общего применения часто снабжают двумя параллельно работающими счетчиками. Один более чувствителен к α и β излучениям, а второй к γ-лучам. Такая схема применения двух счетчиков реализована в дозиметре RADEX RD1008 и в дозиметре-радиометре РАДЭКС МКС-1009 , в котором установлены счетчик БЕТА-2 и БЕТА-2М . Иногда между счетчиками помещают брусок или пластину из сплава, в котором есть примесь кадмия. При попадании нейтронов в такой брусок возникает γ-излучение, которое и регистрируется. Это делается для получения возможности определять нейтронное излучение, к которому простые счетчики Гейгера практически нечувствительны. Еще один способ - покрытие корпуса (катода) примесями, способными придавать чувствительность к нейтронам.

Галогены (хлор, бром) к газу подмешивают для быстрого самогашения разряда. Той же цели служат и пары спирта, хотя спирт в таком случае недолговечен (это вообще особенность спирта) и «протрезвевший» счетчик постоянно начинает «звенеть», то есть, не может работать в предусмотренном режиме. Это происходит где-то после регистрации 1e9 импульсов (миллиарда) что не так уж и много. Счетчики с галогенами намного долговечнее.

Параметры и режимы работы счетчиков Гейгера

Чувствительность счетчиков Гейгера.

Чувствительность счетчика оценивается отношением числа микрорентген от образцового источника к числу вызываемых этим излучением импульсов. Поскольку счетчики Гейгера не предназначены для измерения энергии частиц, точная оценка затруднительна. Счетчики калибруют по образцовым изотопным источникам. Необходимо отметить, что данный параметр у разных типов счетчиков может сильно отличаться, ниже приведены параметры самых распространённых счетчиков Гейгера-Мюллера:

Счетчик Гейгера-Мюллера Бета-2 - 160 ÷ 240 имп / мкР

Счетчик Гейгера-Мюллера Бета-1 - 96 ÷ 144 имп / мкР

Счетчик Гейгера-Мюллера СБМ-20 - 60 ÷ 75 имп / мкР

Счетчик Гейгера-Мюллера СБМ-21 - 6,5 ÷ 9,5 имп / мкР

Счетчик Гейгера-Мюллера СБМ-10 - 9,6 ÷ 10,8 имп / мкР

Площадь входного окна или рабочая зона

Площадь датчика радиации, через которую пролетают радиоактивные частицы. Данная характеристика напрямо связана с габаритами датчика. Чем больше площадь, тем больше частиц уловит счетчик Гейгера-Мюллера. Обычно данный параметр указывается в квадратных сантиметрах.

Счетчик Гейгера-Мюллера Бета-2 - 13,8 см 2

Счетчик Гейгера-Мюллера Бета-1 - 7 см 2

Это напряжение соответствует приблизительно середине рабочей характеристики. Рабочая характеристика составляет плоскую часть зависимости числа регистрируемых импульсов от напряжения, поэтому ее еще называют «плато». В этой точке достигается наибольшая скорость работы (верхний предел измерений). Типичное значение 400 В.

Ширина рабочей характеристики счетчика.

Это разность между напряжением искрового пробоя и напряжением выхода на плоскую часть характеристики. Типичное значение 100 В.

Наклон рабочей характеристики счетчика.

Наклон измеряется в процентах от числа импульсов на вольт. Он характеризует статистическую погрешность измерений (подсчета числа импульсов). Типичное значение 0.15%.

Допустимая температура эксплуатации счетчика.

Для счетчиков общего применения -50 … +70 градусов Цельсия. Это весьма важный параметр, если счетчик работает в камерах, каналах, и других местах сложного оборудования: ускорителей, реакторов и т.п.

Рабочий ресурс счетчика.

Общее число импульсов, которое счетчик регистрирует до того момента, когда его показания начнут становиться неверными. Для приборов с органическими добавками самогашения, как правило, составляет число 1e9 (десять в девятой степени, или один миллиард). Ресурс считается только в том случае, если к счетчику приложено рабочее напряжение. Если счетчик просто хранится, этот ресурс не расходуется.

Мертвое время счетчика.

Это время (время восстановления), в течение которого счетчик проводит ток после срабатывания от пролетевшей частицы. Существование такого времени означает, что для частоты импульсов есть верхний предел, и это ограничивает диапазон измерений. Типичное значение 1e-4 с, то есть десять микросекунд.

Нужно отметить, что благодаря мертвому времени, датчик может оказаться «зашкаленным» и молчать в самый опасный момент (например, самопроизвольной цепной реакции на производстве). Такие случаи бывали, и для борьбы с ними применяют свинцовые экраны, закрывающие часть датчиков аварийных систем сигнализации.

Собственный фон счетчика.

Измеряется в свинцовых камерах с толстыми стенками для оценки качества счетчиков. Типичное значение 1 … 2 импульса в минуту.

Практическое применение счетчиков Гейгера

Советская и теперь российская промышленность выпускает много типов счетчиков Гейгера-Мюллера. Вот несколько распространенных марок: СТС-6, СБМ-20, СИ-1Г, СИ21Г, СИ22Г, СИ34Г, счетчики серии «Гамма», торцевые счетчики серии «Бета » и есть еще множество других. Все они применяются для контроля и измерений радиации: на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту. После чернобыльской аварии, бытовые дозиметры , ранее неизвестные населению даже по названию, стали очень популярными. Появилось много марок бытовых дозиметров. Все они используют именно счетчик Гейгера-Мюллера в качестве датчика радиации. В бытовых дозиметрах устанавливают от одного до двух трубок или торцевых счетчиков.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ВЕЛИЧИН

Долгое время была распространена единица измерения Р (рентген). Однако, при переходе к системе СИ появляются другие единицы. Рентген - это единица экспозиционной дозы, «количество радиации», которое выражается числом образовавшихся ионов в сухом воздухе. При дозе в 1 Р в 1 см3 воздуха образуется 2.082e9 пар ионов (что соответствует 1 единице заряда СГСЭ). В системе СИ экспозиционную дозу выражают в кулонах на килограмм, а с рентгеном это связано уравнением:

1 Кл/кг = 3876 Р

Поглощенная доза излучения измеряется в джоулях на килограмм и называется Грей. Это взамен устаревшей единицы рад. Мощность поглощенной дозы измеряется в греях в секунду. Мощность экспозиционной дозы (МЭД) раньше измерявшаяся в рентгенах в секунду, теперь измеряется в амперах на килограмм. Эквивалентная доза излучения, при которой поглощенная доза составляет 1 Гр (грей) и коэффициент качества излучения 1, называется Зиверт. Бэр (биологический эквивалент рентгена) - это сотая часть зиверта, в настоящее время уже считается устаревшей. Тем не менее, и сегодня очень активно применяются все устаревшие единицы.

Главными понятиями в радиационных измерениях считаются доза и мощность. Доза - это число элементарных зарядов в процессе ионизации вещества, а мощность - это скорость образования дозы за единицу времени. А уж в каких единицах это выражается, это дело вкуса и удобства.

Даже минимальная доза опасна в смысле отдаленных последствий для организма. Расчет опасности достаточно прост. Например, ваш дозиметр показывает 300 миллирентген в час. Если вы останетесь в этом месте на сутки, вы получите дозу 24*0.3 = 7.2 рентген. Это опасно и нужно как можно скорее уходить отсюда. Вообще, обнаружив даже слабую радиацию надо уходить от нее и проверять ее даже на расстоянии. Если она «идет за вами», вас можно «поздравить», вы попали под нейтроны. А не каждый дозиметр может на них отреагировать.

Для источников радиации используют величину, характеризующую число распадов за единицу времени, ее называют активностью и измеряют также множеством различных единиц: кюри, беккерель, резерфорд и некоторыми другими. Величина активности, замеренная дважды с достаточным разносом по времени, если она убывает, позволяет рассчитать время, по закону радиоактивного распада, когда источник станет достаточно безопасным.

Радиационная безопасность и степень загрязнения окружающей среды не беспокоила многих граждан стран мира до того момента, пока не произошли катастрофические события, унесшие жизни и здоровье сотен и тысяч людей. Максимально трагическими в плане радиационного загрязнения были Фукусима, Нагасаки и Чернобыльская катастрофа. Эти территории и связанные с ними истории хранятся в памяти каждого человека до сих пор и являются уроком о том, что независимо от внешнеполитической ситуации и уровня финансового благополучия о радиационной безопасности стоит беспокоиться всегда. Необходимо знать, для регистрации каких частиц применяется счетчик Гейгера, какие меры спасения профилактики стоит применять, если случается катастрофа.

Для чего используется счетчик Гейгера? В связи со множественными техногенными катастрофами и критическим повышением уровня радиации в воздухе за последние несколько десятков лет, человечество придумало и изобрело уникальные и максимально удобные приборы для регистрации частиц с помощью счетчика Гейгера бытового и промышленного использования. Эти приборы позволяют измерить уровень радиационного загрязнения, а также статично контролировать ситуацию загрязнения на территории или местности, учитывая погодные условия, географическое расположение и климатические перепады.

Каков принцип действия счетчика Гейгера? Сегодня приобрести дозиметр бытового типа и устройство счетчика Гейгера может каждый желающий человек. Следует отметить, что в условиях того, что радиация может быть как естественного, так и искусственного типа, человек обязан постоянно следить за радиационным фоном в своем доме, а также точно знать о том, какие частицы регистрирует счетчик Гейгера, о методах и способах профилактической защиты от ионизирующих веществ и . Из-за того, что радиация не может быть замечена или почувствована человеком без специального оснащения, многие люди могут на протяжении длительного времени находиться в состоянии зараженности, не подозревая об этом.

От какой радиации нужен счетчик Гейгера?

Важно напомнить, что радиация может быть разной, это зависит от того, из каких заряженных частиц она состоит и как далеко распространилась от своего источника. Для чего нужен счетчик Гейгера? К примеру, альфа-частицы радиации не считаются опасными и агрессивными по отношению к человеческому организму, однако при длительном воздействии они могут приводить к некоторым формам заболеваний, доброкачественным опухолям и воспалениям. Бета-радиация считается максимально опасной и губительной для человеческого здоровья. Именно на измерение таких частиц в воздухе и направлен принцип работы счетчика Гейгера.

Бета-заряды могут производиться как искусственным путем в результате работы АЭС или химических лабораторий, так и природным, из-за вулканических пород и других подземных источников. В тех или иных случаях, высокая концентрация в воздухе ионизирующих элементов бета-типа может привести к раковым недугам, доброкачественным опухолям, инфекциям, отслоениям слизистых оболочек, нарушениям работы щитовидной железы и костного мозга.

Что такое счетчик Гейгера и как работает счетчик Гейгера? Так называют специальное устройство, которым оснащаются дозиметры и радиометры бытового и профессионального типа. Счетчик Гейгера – это чувствительный элемент дозиметра, который при условиях настройки определенного уровня чувствительности помогает выявить концентрацию в воздухе ионизирующих веществ за отведенный промежуток времени.

Счетчик Гейгера, фото которого показано выше, был впервые изобретен и проверен на практике в начале двадцатого века ученым Вальтером Мюллером. Преимущества и недостатки счетчика Гейгера могут оценить и нынешние поколения. Данное устройство широко применяется в быту для и промышленной сфере до настоящих пор. Некоторые умельцы даже делают счетчик Гейгера своими руками.

Улучшенные дозиметры для радиации

Следует сказать, что с момента изобретения счетчика Гейгера и дозиметра до настоящих дней эти универсальные устройства прошли много этапов улучшения и модернизации. Сегодня такие приборы можно использовать не только для проверки низких показателей радиационного фона в бытовых условиях или на производстве, но также использовать более оптимизированные и улучшенные модели, которые помогают измерить уровень радиации на АЭС, а также в процессе ведения военных действий.

Современные способы применения счетчика Гейгера позволяют улавливать не только общее количество ионизирующих веществ в воздухе за определенный отрезок времени, но также реагировать на их плотность, степень заряженности, тип излучения и характер воздействия на поверхности.

К примеру, назначение счетчиков Гейгера для бытовых нужд или личного пользования не предусматривает необходимость наличия модернизированных возможностей, поскольку они, как правило, применяются для бытового использования и служат для проверки радиационного фона в доме, на продуктах питания, одежде или строительных материалах, которые потенциально могут содержать в себе определенный уровень заряда. Однако, промышленные и профессиональные дозиметры необходимы для того, чтобы проверять более серьезные и комплексные радиационные излучения и служить постоянным способом контролирования радиационного поля на АЭС, химических лабораториях или атомных станциях.

Закажите бесплатно консультацию эколога

получить*

Нажимая кнопку «Отправить», я даю свое согласие на обработку моих персональных данных, в соответствии с Федеральным законом от 27.07.2006 года №152-ФЗ «О персональных данных», на условиях и для целей, определенных в Согласии на обработку персональных данных

Учитывая тот факт, что многие современные страны сегодня имеют сильнодействующее ядерное оружие, иметь профессиональные дозиметры и счетчики Гейгера должен каждый человек на планете, чтобы в случае аварийной ситуации и катастрофы иметь возможность вовремя проконтролировать радиационное поле и спасти свою жизнь и жизнь своих близких людей. Также полезно заранее изучить плюсы и минусы счетчика Гейгера.

Стоит сказать, что принцип действия счетчиков Гейгера обеспечивает реакцию не только на интенсивность радиационного заряда и количество ионизирующих частиц в воздухе, но также позволяет разделять альфа-излучение от бета-радиации. Поскольку бета-радиация считается максимально агрессивной и сильнодействующей при своем заряде и концентрации ионов, счетчики Гейгера для ее проверки покрывают специальными хомутами из свинца или стали, чтобы отсеять лишние элементы и не повредить оборудование при проверке.

Возможность отсеивать и разделять различные потоки радиационного типа позволила многим людям сегодня качественно использования дозиметры, максимально четко просчитывать опасность и уровень загрязнения той или иной территории радиационными элементами различного характера.

Из чего состоит счетчик Гейгера?

Где применяется счетчик Гейгера? Как уже говорилось выше, счетчик Гейгера не является отдельным элементом, но служит для того, чтобы быть ведущим и основным элементом в конструкции дозиметра. Он необходим для максимально качественной и точной проверки радиационного фона в той или иной местности.

Следует сказать о том, что счетчик Гейгера имеет относительно незамысловатую схему устройства. В общем и целом, его конструкция имеет следующие особенности.


Счетчик Гейгера представляет собой небольшой контейнер, внутри которого содержится инертный газ. В качестве газа различные производители используют разные элементы и вещества. Максимально часто счетчики Гейгера производят с баллонами, наполненными аргоном, неоном или смесями этих двух веществ. Стоит сказать о том, что газ, который заполняет баллон счетчика, находится под минимальным давлением. Это нужно для того, чтобы не было напряжения между катодом и анодом и не возникало электрического импульса.

Катод – это конструкция всего счетчика. Анод представляет собой проволоку или металлическое соединение между баллоном и основной конструкцией дозиметра, подведенную к датчику. Следует отметить, что в некоторых случаях анод, который непосредственно реагирует на радиационные элементы, может изготавливаться со специальным защитным покрытием, которое позволяет контролировать ионы, проникающие на анод и влияющие на итоговые показатели измерения.

Как работает счетчик Гейгера?

После того, как мы выяснили основные моменты конструкции счетчика Гейгера, стоит описать кратко принцип действия счетчика Гейгера. Учитывая несложность его обустройства, работа его и функционирование тоже крайне легко объяснить. Счетчик Гейгера работает по такому принципу:
  1. Когда дозиметр включается между катодом и анодом возникает повышенное электрическое напряжение с помощью резистора. Однако напряжение не может спадать во время работы по причине того, что баллон счетчика наполнен инертным газом.
  2. Когда на анод попадает заряженный ион – он начинает смешиваться с инертным газом чтобы ионизироваться. Таким образом радиационный элемент фиксируется с помощью датчика и может влиять на показатели радиационного фона в проверяемой области. Об окончании проверки обычно сигнализирует характерный звук счетчика Гейгера.
Как уже говорилось выше, некоторые аноды для счетчиков Гейгера производятся со специальным покрытием. Такие меры необходимы для того, чтобы счетчик максимально качественно улавливал только бета излучение и реагировал на максимально опасные для человеческого организма заряженные частицы.

Рекомендуем почитать

Наверх