Счетчики на отопление какие цифры надо подавать. Как передать показания теплового счетчика. Положительные и отрицательные стороны измерителей

Полы и напольные покрытия 17.04.2021
Полы и напольные покрытия

Хотя счетчик тепла является устройством функционально более простым, чем современный мобильный телефон, у потребителей часто возникают вопросы относительно снятия расчетных показаний потребленной тепловой энергии.

Также у многих появляються проблемы с интерпретацией других, выводимых на дисплей, данных.

Прежде всего, перед считыванием данных со счетчика настоятельно рекомендуем изучить паспорт прибора, так как в нем Вы найдете ответы на большинство вопросов, связанных с техническими характеристиками, функциональными особенностями и обслуживанием счетчика. При этом особое внимание стоит обратить разделу, посвященному работе с меню счетчика, так как от этого зависит правильность данных, которые Вы передаете теплоснабжающей организации, а также ваша возможность установить оптимальный режим потребления.
Рассмотрим основные разделы меню, на примере счетчиков Ultrameter (ООО «Сенсей групп», Украина) и CF-UltraMaXX, Integral MaXX (Itron inc., Германия), которые реализует наша компания.

Считывание показаний потребленной тепловой энергии.

В наших счетчиках значение потребленной тепловой энергии, которое Вам необходимо вносить в платежку, либо передавать поставщику услуг теплоснабжения, находится в самом начале первого уровня меню и появляется сразу же после активации дисплея (См. Рисунки 1 и 2).
Счетчики Ultrameter ведут учет в гигакалориях (Гкал), а счетчики CF-UltraMaXX и Integral MaXX – в киловатт-часах (кВтч).
По заказу, счетчики тепла Ultrameter могут быть запрограммированы на учет в кВтч, а счетчики CF-UltraMaXX – в гигаджоулях (ГДж), но поскольку подобным запросов мы не получали, то приборы в такой конфигурации не поставлялись.

К тому же, наиболее удобными для потребителя в Украине являются счетчики, которые ведут учет тепла в гигакалориях, так как отечественные теплоснабжающие предприятия предпочитают принимать показания именно в этих единицах.
Если счетчик ведет учет тепла в других единицах, то перевести показания в гигакалории Вы можете в соответствии со следующими соотношениями:

1000 кВт/ч = 1 МВтч = 0,86 Гкал;

1 ГДж = 0.24 Гкал

К примеру:

Счетчик тепла насчитал 3250 кВт/ч, что в переводе в Гкал составит:

3250 * 0,86 = 0,396 Гкал. 2,795 Гкал.

Счетчик тепла насчитал 1,650 ГДж, что в переводе в Гкал составит:

1,650 * 0,24 = 0,396 Гкал. 0,396 Гкал.



Рисунок 1 – Дисплей счетчиков CF- UltraMaXX.



Рисунок 2 – Дисплей счетчиков UltraMeter

Считывание значений расхода, температур и мощности.

Значения расхода, мощности и температуры являются сервисными: они не используются для взаиморасчетов с поставщиком услуг, но позволяют увидеть, в каком режиме происходит потребление, настроить его оптимальный режим или же выявить внештатную ситуацию работы прибора учета тепла (неправильная установка расходомера или датчиков температуры, аномальные значения температур либо расхода и т.д.).

Для этого сначала разберемся с навигацией в меню счетчиков. В CF UltraMaXX предусмотрено 3 уровня пользователя (1 – Расчетные данные; 2 – Архивные данные; 3 – Текущие значения), в Ultrameter – 4 (А1 – Расчетные данные и текущие показания; А2 – Архивные данные; А3 – Настройка даты и времени; А4 – режим поверки). Переход между уровнями осуществляется 2-х секундным, а внутри уровня – кратковременным, менее 2-х секунд, нажатием кнопки. При этом, в CF UltraMaXX текущий уровень постоянно отображается в верхнем правом углу (см. Рисунок 1), а в UltraMeter — появляется при переходе в соответствующий уровень.

    Интересующие нас значения находятся:

  • CF UltraMaXX – на 3-м уровне:

    Параметр

    Единица измерения

    Расход теплоносителя, f

    Тепловая мощность, P

    Температура в подающем трубопроводе, Т вх

    Температура в обратном трубопроводе, Т вых

    Разница температур, ΔT = (Т вх - Т вых)

    Другие сервисные данные: наработка счетчика серийный номер и т.д.

На что нужно обратить внимание, рассматривая значения данных параметров:

Значение параметров

Определение

ΔT = (-3 …0) °С если

f = 0 м 3 /ч,

ΔT = >0 °С если

f > 0 м 3 /ч

Небольшая негативная разница температур при отсутствии расхода (перекрытом кране на входе). При подаче расхода ΔT переходит в положительную зону.

Ситуация на первый взгляд странная, но не является аварийной. Возникает в тех случаях, когда перекрывают кран на входе системы, а на выходе оставляют открытым. Таким образом, вода с общего обратного стояка может попадать на датчик температуры на выходе системы.

Особо волноваться в данной ситуации не стоит.

ΔT < 0 °C и

f > 0 м 3 /ч.

Негативная разница температур при наличии расхода

Скорее всего, счетчик установлен неправильно: перевернут расходомер (против направления потока) либо датчики температуры перепутаны местами.

Необходимо обратиться в организацию, осуществившую установку счетчика.

ΔT > 30 °C

Очень высокое значение потери температуры.

Для квартирного учета такое высокое значение ΔT весьма нетипично: большую часть времени потребление происходит при значении ΔT < 20°C . Даже в случае сильных морозов, когда поставщики резко повышают температуру теплоносителя (Т вх ), в нормальном режиме работы ΔT не превышает 30 °C .

Скорее всего, ничего страшного, но лучше проследить за работой счетчика и перезвонить техническому специалисту (см. номера ниже)

В данной статье мы осветили только небольшую часть информации, касательно работы счетчиков, а также некоторых нештатных (аварийных) ситуаций. В ближайшее время, приведем примеры реальных режимов потребления с соответствующими графиками, и детально разберем, какие из них являются наиболее экономными.

Если у Вас есть вопросы, относительно работы – будем рады на них ответить!

Описание:

Проводимое в последнее десятилетие массовое внедрение приборов учета воды и тепла заставляет потребителей задумываться о путях снижения платежей за используемые ресурсы. Однако далеко не все начинают экономить на фактическом потреблении. Часто проблема решается более простым способом – манипуляциями с прибором учета. Этой статьей авторы надеются привлечь внимание специалистов метрологических служб, водо- и энергоснабжающих организаций с целью разработать методы борьбы с хищениями тепла и воды.

О некоторых методах «экономии» при ведении коммерческого учета воды и тепла

Изменение во времени среднечасовых расходов М 1 и М 2 на вводе системы отопления и относительного расхождения их показаний

На рис. 1 в графическом виде показан пример «ремонта» тепло-счетчика прямо на месте эксплуатации, без его отключения и демонтажа, видимо, с применением ноутбука и сервисной программы.

По данным энергоснабжающей организации, данный узел учета оснащен весьма современным теплосчетчиком и введен в эксплуатацию осенью 2002 года. Но уже к февралю 2003 года сервисная организация, обслуживающая этот узел учета, обнаружила заметное отставание показаний канала М 1 от соответствующих показаний канала М 2 (измеренная «утечка» и несанкционированный водоразбор составили около -120 т за месяц).

Отрицательное расхождение каналов измерений М 1 и М 2 в закрытой системе на -1,7 % наладчику показалось неприличным, и «эффективное» решение проблемы было найдено: в 11:22 27 февраля цена импульса расходомера обратной воды была уменьшена ровно на 3,0 %! И это при том, что допускаемая погрешность измерения расхода для данных расходомеров равна ±1 %. Таким образом, отрицательная поправка к показаниям расходомера М 2 троекратно (!) превысила метрологический допуск.

В результате такой тайной «наладки» (энергоснабжающая организация, как всегда, оказалась не в курсе этого события) образовалась «утечка» положительная (около 100 т в месяц). Здесь уместно предположить, что таким образом сервисная организация решила скомпенсировать убытки, ранее причиненные поставщику тепла своим безответственным «сервисом».

Конечно же, сервисная организация не призналась в факте самовольного и незаконного вмешательства в работу защищенного и опломбированного коммерческого узла учета и объснила это явление самопроизвольным уменьшением показаний канала измерений М 2 ровно на 3 %.

Приведем еще один наглядный пример тому, как самопроизвольно по рабочим дням и в рабочее время изменяются важнейшие настройки тепловычислителей, непосредственно влияющие на результаты учета и, следовательно, на объемы платежей за потребляемые тепловую энергию и теплоноситель.

На рис. 2 приведен график изменения во времени среднечасовых относительных расхождений измеренных часовых энергий W (хранящихся в часовых архивах) и их упрощенных расчетных аналогов:
W расч = 0,001 .
При этом для определения W расч были использованы значения М 1 , М 2 , t 1 , t 2 из соответствующих часовых архивов, а среднечасовые расхождения для каждого часа были рассчитаны по формуле
d W = [(W - W расч) / W расч ] 100 %. В начальный период времени среднечасовые значения d W близки к нулю, что однозначно свидетельствует о том, что до 16-го часа 19 декабря в теплосчетчике применялась полная формула расчета теплопотребления:
W = 0,001 . Но 19 декабря примерно в 15:40 скачкообразно возникла систематическая нехватка энергии в часовых архивах на среднем уровне -4,7 %.

Более детальное изучение этого явления показало, что в этот момент времени было выполнено переключение опломбированного тепловычислителя на неполное уравнение измерений:
W от = 0,001 , что и привело к потере (обнулению) учетной составляющей:
W гвс = 0,001 [(M 1 - M 2) (h 2 - h хв)] и, как следствие, к систематическому занижению теплопотребления на уровне -4,7 %. Однако и в данном случае сервисная организация активно отрицала факт тайного переключения уравнений измерений тепловой энергии, и т. к. наладчик не был пойман с поличным в присутствии свидетелей, то доказать преднамеренность тайного искажения результатов учета весьма непросто. Ведь существует вероятность, что разработчик такого современного теплосчетчика и сервисная организация ни в чем не виноваты, а вся эта «экономия» происходит исключительно из-за случайных программных сбоев.

По данным авторов, уже многие типы цифровых теплосчетчиков могут быть перенастроены без снятия пломб при помощи калибровочных программ или известных кодов доступа. Для входа в калибровочную программу достаточно ввести пароль. Известны типы теплосчетчиков и расходомеров, у которых для входа в режим корректировки калибровочных данных необходимо к определенному месту корпуса прибора поднести специальное устройство.

Существует ошибочное мнение, что установив теплосчетчик, можно экономить. На самом деле теплосчетчик всего лишь считает тепловую энергию, которая используется для отопления. Для того чтобы начать экономить необходимо предпринимать определенные действия. Например. утеплить здание, установить пластиковые окна, поставить автоматические терморегуляторы на радиаторы отопления, сделать теплоизоляцию стояков и трубопроводов отопления и наконец установить систему погодозависимого автоматического регулирования теплопотребления в зависимости от наружного воздуха.
Каждый объект потребляющий тепловую энергию имеет расчетную максимальную тепловую нагрузку Гкал/час, которая рассчитывается для определенной температуре в помещении и максимальной отрицательной температуры наружного воздуха. Данная температура зависит от местности, в которой расположен объект и определяется на основе статистических данных за несколько лет. По окончанию соответствующего месяца отопительного сезона расчетная нагрузка пересчитывается по фактической среднемесячной температуре наружного воздуха.
В большинстве случаев расчетное значение тепловой энергии и фактическое теплопотребление полученное по показаниям теплосчетчика не совпадают в силу множества причин.
Основные причины не соответствия расчетной величины теплопотребления и полученной по приборам учета:
1. Невыполнение нормативного графика по температуре теплоносителя, который должна выдерживать теплоснабжающая организация в зависимости от температуры наружного воздуха.
2. Не соблюдение расчетного расхода теплоносителя на объекте, как в большую, так и в меньшую сторону из-за нестабильности давления в теплосети, нехватки или избытка перепада давления на объекте.
3. Ошибки в расчетах при проектировании объекта. Изменение нагрузки при строительстве, модернизации, старении объекта.
Для жилых домов существует нормативные величины тепловой энергии на квадратный метр рассчитываемые для температуры внутри помещений +18(+20) градусов. Для каждого месяца отопительного сезона свой норматив, так как среднемесячная температура наружного воздуха для каждого месяца будет своя. Так, например, по возрастанию будет увеличиваться норматив с ноября до января, а далее идет снижение до апреля. Конкретные значения для каждого города утверждаются на административном уровне и их можно получить, зайдя, например, на сайт администрации или теплоснабжающей организации. Таким образом, зная площадь дома можно получить расчетное значение теплопотребления для всего дома и квартиры, в частности умножив нормативное значение Гкал на 1 м3 на площадь дома или квартиры. Для расчета норматива в рублях полученное значение в Гкал нужно умножить на тариф - стоимость 1 Гкал. Получив расчетное значение теплопотребления можно сравнить с фактическим, получаемым по теплосчетчикам.
При превышении нормативного значения температуры внутри помещений вызывают, так называемые "перетопы". Когда становиться жарко и душно в квартирах жильцы проветривают помещения, тем самым, отапливая улицу. Причиной этого может быть резкое потепление и не способность теплоснабжающей организации своевременного снижения температуры теплоносителя. В результате получаемое значение по теплосчетчику может превысить расчетное значение.
По статистике теплосчетчики показывают, что фактическое теплопотребление на 20% ниже, чем расчетное значение, но существуют факторы, которые нарушают данную статистику. В этой статье приводятся .
В ручную, использую регулирующую арматуру или задвижки можно уменьшать или увеличивать теплопотребление, но намного эффективнее использовать специально разработанные для этого системы автоматического регулирования. При ручном регулировании необходимо постоянно контролировать температуру внутри помещений и в зависимости от того стало прохладно или наоборот тепло, приоткрывать или призакрывать задвижку или регулирующую арматуру на тепловом узле. Практически человек должен жить в этом доме и регулярно день ото дня (а может и несколько раз в день) ходить на тепловой узел и регулировать расход. Про автоматические средства, позволяющие экономить можно почитать

При заполненном трубопроводе и закрытой запорной арматуре (отображаемый расход при этом должен быть равен 0) отображаются значения g1.

Вероятная причина:

1. По трубопроводу, на котором установлен теплосчетчик с первичный преобразователем расхода, течет электрический ток.

2. Неисправность запорной арматуры

1. Поскольку тепловые сети не предназначены для передачи электроэнергии, найти и устранить источник электрического тока.

2. Пустить ток в обвод участка, на котором установлен теплосчетчик, следующим образом:

Заизолировать болты фланцев. Для приборов с резьбовым соединение - врезать фланцы на близлежащих участках трубопроводов либо воспользоваться фланцами примыкающей арматуры;

Рис. 1. Схема заизолирования болтов фланцев

Произвести электрическое шунтирование участка трубопровода на котором установлен теплосчетчик шунтирующей шиной. Использовать стальную проволоку диаметром 6...8 мм. Способ соединения - сварка.

Рис. 2. Схема электрического шунтирования участка трубопровода.

При предполагаемом бесперебойном расходе теплоносителя наблюдается нестабильность показаний g1 (g2).

Наиболее вероятные причины :

Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

Методы устранения :

Произвести демонтаж ППР (первичного преобразователя расхода). Возможно установить фильтр, если проблема повторяется.

При ожидаемом соотношении расходов в подающем и обратном трубопроводах, наблюдается разница показаний между g1 и g2. При этом (g1-g2)/g1*100 > 2%

Наиболее вероятные причины :

1.Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

2. Не выдержаны требования к прямым участкам трубопроводов.

3. Неисправность первичного преобразователя расхода.

Методы устранения :

В том случае, если не обнаружено засорения проточной части, преобразователь расхода направить для ремонта и проведения поверки

Отсутствие сигнала от преобразователя расхода канала V1.

Наиболее вероятные причины :

1.Направление потока в трубопроводе не соответствует направлению стрелки, нанесенной на корпусе первичного преобразователя

2. Электропроводное инородное тело попало в канал или подключенного к нему преобразователя расход и замкнуло электроды на корпус.

Диагностик а:

1.Проанализировать соответствие направления стрелки направлению потока.

2.Демонтирвоать ППР, произвести осмотр проточной части

3.Прозвонить цепочку питания от вычислителя.

Устранение :

1. Осуществить перемонтаж ППР.

2.Очистить проточную часть и установить перед преобразователем расхода магнитно - механический фильтр.

3.Восстановить сеть при её разрыве.

Обрыв или короткое замыкание датчиков температуры канала Т1 или Т2.

Наиболее вероятные причины :

1.Датчики температуры не подключены или вместо них подключено другое устройство (преобразователь расхода).

2.Обрыв или короткое замыкание в проводах, соединяющих датчики температуры к вычислителю или неисправны датчики температуры.

Диагностика :

1.Проверить правильность подключения.

2.Отсоединить провода от датчиков температуры, измерить их сопротивление (нормальным считается сопротивление от 500 до 780 Ом). Если сопротивление выходит за упомянутые границы, это может говорить об обрыве, коротком замыкании или же о неисправности датчиков температуры.

Устранение :

1. Выполнить заново монтаж с выбранной измерительной схемой.

2. Произвести замену датчиков температуры, если неисправность нашли в них

T12.

Наиболее вероятные причины :



Рекомендуем почитать

Наверх